CMMI-EPSRC: Quantitative Characterization of Mission Critical Microstructures of Engineering Metals with Diffusive Ultrasound

CMMI-EPSRC:利用扩散超声波对工程金属的关键微观结构进行定量表征

基本信息

  • 批准号:
    EP/W014769/1
  • 负责人:
  • 金额:
    $ 77.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Catastrophic failures of components (e.g. in aero engines) brutally expose the limitations of the existing industrial capability to quantitatively characterize mission-critical engineering metals. These metals are polycrystalline, with physical and structural properties of the crystallites typically anisotropic; thus, many vital properties of the finished components, including strength, fatigue life, and creep and corrosion resistance, are strongly dependent on the volumetric grain microstructures, such as the grain size, shape and clusters. Yet these details are very difficult to measure. Current standard practice is restricted to destructive, two-dimensional sections of sacrificial samples, which remains laborious, costly and inaccurate. Ultrasound provides an accessible and non-destructive way to evaluate the fitness-for-service of components throughout the volume. However, it is subject to convoluted effects from sample geometries, microstructures and preferred crystallographic orientations (texture) and, despite decades of research, there lacks model-supported quantitative linkages to extract the microstructural characteristics reliably from ultrasound.This proposal seeks to establish the ultrasonic diffuse wave field (DWF) method to fulfil the need for such volumetric characterization. The DWF is fundamentally an end-result of the microstructures, created by multiple scattering of wave energy at the boundaries of grain inhomogeneities. The most important physical feature of the DWF is that a cross-correlation of the signals recorded at two arbitrary points delivers the mean Green's function, which is equivalent to the impulse response between the points, and intrinsically carries information of the scattering history and the critical microstructures. Importantly, the DWF method's sensitivity to these microstructures is not limited by complex sample geometries; therefore, it could take full advantages of state-of-the-art equipment (e.g. laser ultrasound or phased arrays) for more flexible modalities, e.g. measuring without physical contact, at elevated temperatures, and at manufacturing stages from raw material to finished components.To realise these potentials, PI Lan will develop the experimental means to measure the elastodynamic Green's tensor from localised inspections of the DWF. The output will capitalise on a recent disruptive scientific progress to measure volumetric texture from ultrasonic wave speeds, which enables the effects of texture on ultrasound to be de-coupled from microstructures. Meanwhile, PI Kube will develop theoretical models to uncover new physical understanding of the DWFs in relation to microstructural heterogeneities seen in modern metallic alloys. This will develop recent major advances on multiple scattering and radiative transfer theories for the tensorial elastodynamic form. The PIs will also join forces in computational modelling of the dynamic evolution of the incoherent diffuse field, utilising the leading simulation capabilities at Imperial. These aspects of research will interact with and facilitate each other, and will all be combined in the development of a quantitative methodology for inverse microstructure characterization. The advanced experimental capability, fundamental physical understanding, and quantitative inversion, which are targeted by our project, will allow the DWF method to transit into manufacturing lines and routine in-service non-destructive testing protocols. Raw materials and real components could be continuously and non-destructively characterized throughout the production and service stages, to reduce destructive testing, lower manufacturing waste, and, most importantly, to assure performance and safety. The prospective connections to materials-by-design, materials genome, and process-structure-property-performance are especially exciting. The proposal is submitted as an Aligned Project of of the UK Research Centre in NDE (RCNDE).
零部件(例如航空发动机)的灾难性故障残酷地暴露了现有工业能力在定量表征关键任务工程金属方面的局限性。这些金属是多晶的,微晶的物理和结构特性通常是各向异性的;因此,成品部件的许多重要特性,包括强度、疲劳寿命、蠕变和耐腐蚀性,强烈依赖于体积颗粒微结构,如颗粒大小、形状和团簇。然而,这些细节很难衡量。目前的标准做法仅限于牺牲品样本的破坏性二维切片,这仍然费力、昂贵且不准确。超声波提供了一种方便和非破坏性的方法来评估整个体积内组件的服务适宜性。然而,它受到样品几何、微结构和择优晶体取向(织构)的复杂影响,尽管经过几十年的研究,但缺乏模型支持的定量联系来可靠地从超声中提取微结构特征。该建议试图建立超声扩散波场(DWF)方法来满足这种体积表征的需要。DWF从根本上说是微观结构的最终结果,这些微结构是由波能在颗粒不均匀边界上的多次散射而产生的。离散傅里叶变换最重要的物理特征是,在任意两个点上记录的信号的互相关产生平均格林函数,该函数相当于两个点之间的脉冲响应,本质上携带了散射历史和临界微结构的信息。重要的是,DWF方法对这些微结构的敏感性不受复杂样品几何形状的限制;因此,它可以充分利用最先进的设备(例如激光超声或相控阵)的优势,实现更灵活的模式,例如在高温下无物理接触测量,以及在从原材料到成品的制造阶段进行测量。这项成果将利用最近一项颠覆性的科学进展,根据超声波速度测量体积纹理,这使得纹理对超声波的影响能够从微观结构中分离出来。与此同时,Pi Kube将开发理论模型,以揭示与现代金属合金中出现的微结构不均一性有关的DWF的新物理理解。这将发展张量弹性动力学形式的多重散射和辐射传输理论的最新进展。PI还将联合起来,利用帝国理工学院领先的模拟能力,对非相干扩散场的动态演变进行计算建模。这些方面的研究将相互作用,相互促进,并将全部结合在一起,开发出一种定量的微结构表征方法。我们项目的目标是先进的实验能力、基本的物理理解和定量反演,这将使DWF方法过渡到生产线和常规的在役无损检测方案中。原材料和实际部件可以在整个生产和服务阶段进行连续和非破坏性的表征,以减少破坏性测试,降低制造浪费,最重要的是确保性能和安全。与按设计设计的材料、材料基因组和工艺-结构-性能-性能的未来联系尤其令人兴奋。该提案是作为英国NDE研究中心(RCNDE)的一个联合项目提交的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigation of the influence of macrozones in titanium alloys on the propagation and scattering of ultrasound
  • DOI:
    10.1098/rspa.2023.0176
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Yeoh;Bo Lan;M. J. Lowe
  • 通讯作者:
    W. Yeoh;Bo Lan;M. J. Lowe
Theoretical and numerical modeling of Rayleigh wave scattering by an elastic inclusion.
  • DOI:
    10.1121/10.0017837
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan Li;Ming Huang;Yongfeng Song;B. Lan;Xiongbing Li
  • 通讯作者:
    Shan Li;Ming Huang;Yongfeng Song;B. Lan;Xiongbing Li
Frustrated total internal reflection of ultrasonic waves at a fluid-coupled elastic plate
超声波在流体耦合弹性板处的受抑全内反射
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Almeida A. A.
  • 通讯作者:
    Almeida A. A.
Stiffness matrix method for modelling wave propagation in arbitrary multilayers
用于模拟任意多层中的波传播的刚度矩阵法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang M
  • 通讯作者:
    Huang M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Lan其他文献

Infection Process and Pathogenic Mechanism of Phomopsis asparagi, the Asparagus Stem Blight Pathogen
芦笋茎枯病病原菌芦笋拟茎点霉的侵染过程及致病机制
  • DOI:
    10.1007/s12600-015-0499-5
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Ying-Qing Yang;Bo Lan;Yan-Li Jian;Dong-Dong Chang;Shun-Liang Zhang;Xiang-Min Li
  • 通讯作者:
    Xiang-Min Li
Myosin filaments in smooth muscle cells do not have a constant length
平滑肌细胞中的肌球蛋白丝没有恒定的长度
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. C. Liu;J. Rottler;Lu Wang;Jenny Zhang;C. Pascoe;Bo Lan;Brandon A. Norris;A. M. Herrera;P. Paré;C. Seow
  • 通讯作者:
    C. Seow
Holocene vegetation and hydrology variations and their associations with climate changes: a multi‑proxy analysis of a sediment core from an alpine basin in the middle Tianshan Mountains
  • DOI:
    https://doi.org/10.1007/s00382-021-05670-7
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Yunpeng Yang;Zhaodong Feng;Min Ran;Dongliang Zhang;Bo Lan;Aizhi Sun
  • 通讯作者:
    Aizhi Sun
Nomogram and risk-score for predicting overall survival and risk stratification in patients with sarcomatoid non-small cell lung cancer: a multicenter study of 135 patients
  • DOI:
    10.1186/s12890-025-03796-6
  • 发表时间:
    2025-07-09
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Wenjian Tang;Yujin Yin;Chunju Wen;Shuhua Luo;Jinsheng Huang;Bo Lan;Yuan Kang;Zhiqiang Zhang;Zhongjian Liao;Zhen Wu;Qing Chen;Jiawang Wei;Jing Qiu;Xingting Qiu;Hua Chen;Ming Jia;Junyuan Zhong;Jianping Zhong
  • 通讯作者:
    Jianping Zhong
Metabolic reprogramming in cancer therapy-related cardiovascular toxicity: Mechanisms and intervention strategies
癌症治疗相关心血管毒性中的代谢重编程:机制与干预策略
  • DOI:
    10.1016/j.semcancer.2025.05.009
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Cheng Zeng;Ying Gao;Bo Lan;Jiani Wang;Fei Ma
  • 通讯作者:
    Fei Ma

Bo Lan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
  • 批准号:
    EP/Y032489/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
  • 批准号:
    EP/X040844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
  • 批准号:
    EP/Z531182/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
  • 批准号:
    EP/V027395/2
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
  • 批准号:
    EP/Y024052/1
  • 财政年份:
    2024
  • 资助金额:
    $ 77.8万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了