H2: Absolute zero-carbon propulsion systems

H2:绝对零碳推进系统

基本信息

  • 批准号:
    EP/W014815/1
  • 负责人:
  • 金额:
    $ 54.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Hydrogen presents an attractive alternative to carbonaceous fuels, potentially enabling absolute zero carbon propulsion systems for aerospace applications. Land-based gas turbines for power generation have already demonstrated successful operation using hydrogen delivered through premixed fuel injectors. Whilst premixing offers the lowest NOx emissions, it is susceptible to flashback and the high temperatures in modern aerospace gas turbines additionally risk autoignition. These represent significant safety concerns which can be addressed by the direct injection of hydrogen into the combustion chamber to form a diffusion flame. This arrangement requires careful shaping of the aerodynamic transport processes. Recirculation must be ensured, to provide stability, and high intensity turbulence is required for rapid fuel/air mixing to control local stoichiometry. Micro-mix devices achieve this by distributing small scale fuel and air injection sites around the combustor. The small size inherently leads to high strain rates, short mixing timescales and low residence times, ideal conditions for reducing NOx, but challenging conditions for reliable ignition. Additionally, a propensity for micro-mix flames to coalesce has been identified, giving rise to increased NOx emissions. The injection parameters responsible for coalescence have not been studied in detail, although the behaviour has been attributed primarily to the spacing between individual injection sites. Developing fundamental understanding of this behaviour is crucial for aerospace applications, where tighter injector spacing is desirable to maximise power density and so minimise engine weight.This project will experimentally establish the flow physics and combustion processes controlling performance for aviation compliant hydrogen air micro-mix injectors using a new atmospheric pressure test facility, designed specifically for high-fidelity optical measurements. Whilst the improvement in understanding of the flow physics will be of significant value for the development of aerospace compliant hydrogen fuel injection systems, the findings will additionally be relevant to other sectors. Hydrogen combustion presents an opportunity for clean energy and has potential for wide application, for example conventional land-based power generation, micro-gas turbines, industrial, domestic and district heating systems. Additionally, the comprehensive data sets produced will be of significant interest to the CFD community, providing valuable data for validation of the next generation of modelling tools.An extensive test campaign will be performed to establish the micro-mix injection combustion performance as well as the physics underpinning the fluid transport processes defining this. High-fidelity optical measurements will be applied to a range of geometries, providing an unparalleled study of the flow physics. Key aerospace performance metrics (ignition, stability, emissions, combustor exit temperature profile) will be related to design parameters through the mixing behaviour. The scientific findings will provide secure foundations for future industrial development.The intention of the research is to provide the scientific basis for establishing hydrogen combustion within aviation. To maximise the impact from this work, an optimum strategy for the introduction of micro-mix injectors will be developed. Measurement data and understanding gained throughout the project will be used to evaluate the impact of aerospace propulsion system specific requirements on the design of micro-mix injection systems.
氢是一种有吸引力的碳质燃料替代品,可能使绝对零碳推进系统用于航空航天应用。用于发电的陆基燃气轮机已经证明了使用通过预混合燃料喷射器输送的氢气的成功操作。虽然预混合提供最低的NOx排放,但它容易发生回火,并且现代航空航天燃气轮机中的高温还存在自燃风险。这些代表了重要的安全问题,可以通过将氢气直接喷射到燃烧室中以形成扩散火焰来解决。这种布置要求仔细地塑造空气动力学运输过程。必须确保再循环,以提供稳定性,并且需要高强度湍流来快速燃料/空气混合以控制局部化学计量。微混合装置通过在燃烧器周围分布小规模燃料和空气喷射位置来实现这一点。小尺寸固有地导致高应变速率、短混合时间尺度和低停留时间,这是减少NOx的理想条件,但对可靠点火具有挑战性的条件。此外,已经确定了微混合火焰聚结的倾向,从而导致增加的NOx排放。负责聚结的注射参数尚未详细研究,虽然行为已主要归因于单个注射部位之间的间距。发展这种行为的基本理解是至关重要的航空航天应用,其中更紧密的喷射器间距是可取的,以最大限度地提高功率密度,从而最大限度地减少发动机weight.This项目将实验建立符合航空氢空气微混合喷射器的流动物理和燃烧过程控制性能使用一个新的大气压测试设备,专为高保真光学测量。虽然对流动物理的理解的提高对于开发符合航空航天要求的氢燃料喷射系统具有重要价值,但研究结果也将与其他部门相关。氢燃烧为清洁能源提供了机会,并具有广泛应用的潜力,例如传统的陆基发电,微型燃气轮机,工业,家庭和区域供热系统。此外,所产生的全面数据集将引起CFD界的极大兴趣,为下一代建模工具的验证提供有价值的数据。将进行广泛的测试活动,以确定微混合喷射燃烧性能以及定义此的流体传输过程的物理基础。高保真光学测量将应用于一系列的几何形状,提供了一个无与伦比的流动物理研究。关键的航空航天性能指标(点火、稳定性、排放、燃烧室出口温度分布)将通过混合行为与设计参数相关。科学发现将为未来的工业发展提供可靠的基础。研究的目的是为在航空领域建立氢燃烧提供科学依据。为了最大限度地发挥这项工作的影响,将开发一种引入微混合注射器的最佳策略。测量数据和整个项目中获得的理解将用于评估航空航天推进系统的具体要求对微混合喷射系统设计的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Brend其他文献

Mark Brend的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

MicroPI: A micromagnetic approach to absolute palaeointensity determinations
MicroPI:绝对古强度测定的微磁方法
  • 批准号:
    NE/Z000068/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
SBIR Phase II: Absolute protein quantitation in in vitro diagnostics for gut inflammation
SBIR II 期:肠道炎症体外诊断中的绝对蛋白质定量
  • 批准号:
    2242174
  • 财政年份:
    2024
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Cooperative Agreement
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Continuing Grant
Rapid detection of environmental RNA and absolute quantification using internal strand RNA
使用内链 RNA 快速检测环境 RNA 并进行绝对定量
  • 批准号:
    22KJ0945
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Towards an absolute chronology of the outer Solar System
外太阳系的绝对年表
  • 批准号:
    22KJ1286
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
How Bright is the Radio Sky? A 310 MHz Absolute Map
无线电天空有多亮?
  • 批准号:
    2307198
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
Combining Absolute Quantitative Cross-Linking Mass Spectrometry and Molecular Modeling for Probing PROTAC-Mediated Ternary Complex Structures
结合绝对定量交联质谱和分子建模来探测 PROTAC 介导的三元复杂结构
  • 批准号:
    10572720
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
Development of absolute evaluation method for attacking skills using game performance data in soccer
利用足球比赛表现数据开发进攻技术绝对评价方法
  • 批准号:
    23K16708
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
  • 批准号:
    10759829
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
Development of Absolute Quantitative Protein Footprinting Mass Spectrometry (aqPFMS) for Probing Protein 3D Structures
开发用于探测蛋白质 3D 结构的绝对定量蛋白质足迹质谱 (aqPFMS)
  • 批准号:
    2203284
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了