Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
基本信息
- 批准号:2348891
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The absolute Galois group Gal(Q) is well-known throughout mathematics. Its elements are precisely the symmetries of the algebraic closure of the rational numbers. In practice, though, this group is particularly difficult to study. There are continuum-many of these symmetries, most of which cannot be computed by any computer (or Turing machine) running any finite-length program whatsoever. However, the symmetries that mathematicians encounter on a regular basis are essentially always computable -- perhaps because these are fundamental to the group, or perhaps just because noncomputable symmetries are naturally more difficult to examine and work with. This project aims to determine just how much difference there is between the computable symmetries (as a group) and the larger group of all symmetries. The research work lies at the interface of logic and number theory and is likely to attract the interest of both communities. Graduate students from CUNY Graduate Center will participate in this project. An analogous situation exists with the field of all real numbers: only countably many real numbers have computable decimal expansions, so the vast majority of real numbers are noncomputable, yet the computable ones are the only ones ever encountered in daily life. Here, it is known that the computable real numbers form a subfield extremely similar to the full field of all real numbers, an elementary subfield with exactly the same first-order properties. This grant will fund research to attempt to determine whether Gal(Q) is analogous in this way: do the computable symmetries form an elementary subgroup of the full group? (Or, at a minimum, are the two elementarily equivalent?) If so, then mathematicians should be able to determine many results about the full group just by examining the computable symmetries, which are far more accessible. If not, that would suggest that the absolute Galois group is a thornier object than the field of real numbers, with its noncomputable symmetries somehow essential to its character. However, even then, it is possible that the subgroup might be elementary for relatively simple properties (e.g., purely existential statements about the group), in which case this project will attempt to find the first level at which the subgroup stops imitating the full group.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
绝对伽罗瓦群Gal(Q)在整个数学中是众所周知的。 它的元素正是有理数的代数闭包的对称性。 然而,实际上,这一群体特别难以研究。 存在连续统--许多这样的对称性,其中大部分不能由任何计算机(或图灵机)运行任何有限长度的程序来计算。 然而,数学家们经常遇到的对称性基本上总是可计算的--也许是因为这些对称性是群的基础,或者仅仅是因为不可计算的对称性自然更难检验和处理。 这个项目旨在确定可计算对称(作为一个组)和所有对称的更大组之间有多大的差异。这项研究工作是在接口的逻辑和数论,很可能会吸引双方的利益。来自纽约市立大学研究生中心的研究生将参与这个项目。类似的情况也存在于所有真实的数的领域:只有可数的多个真实的数具有可计算的小数展开式,因此绝大多数真实的数是不可计算的,然而可计算的数是日常生活中唯一遇到的数。 这里,已知可计算的真实的数形成与所有真实的数的全域极其相似的子域,具有完全相同的一阶性质的基本子域。该基金将资助研究,试图确定Gal(Q)是否以这种方式类似:可计算对称性是否形成全群的基本子群? (Or至少,这两个基本上是等价的吗?) 如果是这样的话,那么数学家们应该能够仅仅通过考察可计算对称性来确定关于全群的许多结果,这要容易得多。 如果不是,那就意味着绝对伽罗瓦群是一个比真实的数域更棘手的对象,因为它的不可计算的对称性在某种程度上对它的性质至关重要。 然而,即使这样,对于相对简单的属性(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Miller其他文献
Heuristics-enhanced dead-reckoning (HEDR) for accurate position tracking of tele-operated UGVs
启发式增强航位推算 (HEDR),用于遥控 UGV 的精确位置跟踪
- DOI:
10.1117/12.850301 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
J. Borenstein;A. Borrell;Russell Miller;David W. Thomas - 通讯作者:
David W. Thomas
BIG DATA ON THE HEALTH AND WELFARE OF INTERNATIONAL MIGRANTS: THE NEXT STEP IN UNDERSTANDING THE MIGRANT EXPERIENCE IN JAPAN?
关于国际移民健康和福利的大数据:了解日本移民经历的下一步?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller - 通讯作者:
Russell Miller
Mutual aid as a bridge: a rapid realist review of migrant inclusion in the Japanese response to the COVID-19 pandemic
互助作为桥梁:对日本应对 COVID-19 大流行的移民包容性进行快速现实主义审查
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller - 通讯作者:
Russell Miller
Two-hit mouse model of heart failure with preserved ejection fraction combining diet-induced obesity and renin-mediated hypertension
- DOI:
10.1038/s41598-024-84515-9 - 发表时间:
2025-01-02 - 期刊:
- 影响因子:3.900
- 作者:
Justin H. Berger;Yuji Shi;Timothy R. Matsuura;Kirill Batmanov;Xian Chen;Kelly Tam;Mackenzie Marshall;Richard Kue;Jiten Patel;Renee Taing;Russell Callaway;Joanna Griffin;Attila Kovacs;Dinesh Hirenallur-Shanthappa;Russell Miller;Bei B. Zhang;Rachel J. Roth Flach;Daniel P. Kelly - 通讯作者:
Daniel P. Kelly
Monitoring health equity for foreign nationals in Japan: where is the big data?
监测在日外国人的健康公平性:大数据在哪里?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Miller Russell;Arita Kuniko;Igarashi Niaya Harper;Fujii Daiki;Yumino Aya;Jimba Masamine;Russell Miller;Russell Miller;神馬征峰;Russell Miller;Russell Miller - 通讯作者:
Russell Miller
Russell Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Miller', 18)}}的其他基金
Conference: Travel Awards to Attend the Twentieth Latin American Symposium on Mathematical Logic
会议:参加第二十届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
2414907 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Nineteenth Latin American Symposium on Mathematical Logic
第十九届拉丁美洲数理逻辑研讨会
- 批准号:
2212620 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Student Travel Support to Attend the North American Annual and European Summer Meetings of the Association For Symbolic Logic
学生参加符号逻辑协会北美年会和欧洲夏季会议的旅行支持
- 批准号:
1935558 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
The Eighteenth Latin American Symposium on Mathematical Logic
第十八届拉丁美洲数理逻辑研讨会
- 批准号:
1947015 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Mid-Atlantic Mathematical Logic Seminar
大西洋中部数理逻辑研讨会
- 批准号:
1834219 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
- 批准号:
1362206 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Student Travel Awards to Attend the North American Annual and European Summer Meetings of the ASL
参加 ASL 北美年会和欧洲夏季会议的学生旅行奖
- 批准号:
1317262 - 财政年份:2013
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Computability Theory, Facing Outwards
可计算性理论,面向外
- 批准号:
1001306 - 财政年份:2010
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Instructional Scientific Equipment Program
教学科学设备计划
- 批准号:
7511376 - 财政年份:1975
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
应用iTRAQ定量蛋白组学方法分析乳腺癌新辅助化疗后相关蛋白质的变化
- 批准号:81150011
- 批准年份:2011
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2019
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Model theory of absolute Galois groups with a view towards arithmetic geometry
算术几何视角下的绝对伽罗瓦群模型论
- 批准号:
2099876 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Studentship
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2018
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Absolute Galois groups and Massey products
绝对伽罗瓦群和梅西积
- 批准号:
RGPIN-2017-05344 - 财政年份:2017
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
- 批准号:
41981-2012 - 财政年份:2016
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
Iwasawa theoretic approach to the absolute Galois groups of number fields
数域绝对伽罗瓦群的岩泽理论方法
- 批准号:
16K05080 - 财政年份:2016
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
- 批准号:
41981-2012 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual
"Sylow-p Subgroups of Absolute Galois Groups, their Natural Quotients, and Galois Cohomology"
“绝对伽罗瓦群的 Sylow-p 子群、它们的自然商和伽罗瓦上同调”
- 批准号:
41981-2012 - 财政年份:2014
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Grants Program - Individual