High-Bandwidth Sensing for Wide-bandgap Power Conversion

用于宽带隙功率转换的高带宽传感

基本信息

  • 批准号:
    EP/W021315/1
  • 负责人:
  • 金额:
    $ 146.62万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

This project develops new sensing technology for use in power electronic systems, helping the UK to better compete with global leaders in power electronics. Power electronics is a key electrification technology: it is needed in electric vehicles, renewable energy generation, our electricity grid, and anywhere where the flow of power needs to be accurately dosed. This dosing is carried out by rapidly switching currents on and off to create the desired average. This technology reduces our carbon footprint and contributes nearly £50bn per year to the UK economy and supports 82,000 skilled jobs in over 400 UK-based companies (2016 data).The power electronics industry is undergoing significant change, as ultra-fast transistors made from silicon carbide (SiC) or gallium nitride (GaN) have recently emerged, to replace silicon transistors.These new transistors switch 10x faster, which results in 75% less energy being lost in power converters, and enables converters to be shrunk to less than half their previous size. This makes it much easier to build them into other systems, e.g. electric vehicles, resulting in lighter cars with more space for batteries.This project is about helping to maximise the potential of the new transistors. Many companies are struggling to adopt them, because whilst the very fast switching provides the benefits of improved efficiency and radically smaller system size, it also creates problems with electromagnetic interference, and device and system reliability. The transistors switch current on or off so fast (in less than ten nanoseconds, the time it takes light to travel 3 meters), that engineers cannot accurately measure how the voltages and currents change during this time, even with their best equipment, which means it is difficult to fix problems such as interference. Because of this, even the leading companies are slowing down these new transistors, and losing some of their efficiency potential.Our project develops small, low-cost sensors, that make these nanosecond-scale changes visible. They will allow engineers to see exactly how the transistors are switching, helping them develop better, smaller, lighter, and more reliable power electronics. They will allow computer-controlled SiC and GaN power converters to sense when they are creating too much electromagnetic noise, and reduce this by switching more intelligently. It will allow power circuits to detect external short circuits and isolate these before they damage the power converter. We are also developing sensors that provide engineers, or control systems, directly with information that they need (e.g. device temperature), rather than having to infer this indirectly from volts and amps, making the measurements faster and more efficient.The sensors work by detecting electric or magnetic fields via coils, conductive plates, or antennas. The received signal is fed into a chip inside the sensor that computes the required parameter. These new SiC and GaN transistors have made small field sensors on circuit boards viable for the first time, because as signal speeds increase, the wavelengths of these signals become shorter (cm-scale), meaning that their fields can be picked up with millimetre-size coils or antennas. In order to ensure that we develop what industry needs, we are working with 12 partners across automotive, renewable energy, semiconductors, commercial R&D organisations with deep sector experience, and we are accepting new collaborators on request. Our project provides partners and other UK companies and universities with sample sensors. Their feedback, and discussions with partners helps us prioritise our research, and ensures that we are using our research funds to solve the most important problems. We are providing workshops to help keep engineers up-to-date with advanced measurement techniques, and keeping our results online (publications and a dedicated website) for companies to use as desired.
该项目开发用于电力电子系统的新型传感技术,帮助英国更好地与电力电子领域的全球领导者竞争。电力电子技术是一项关键的电气化技术:电动汽车、可再生能源发电、电网以及任何需要精确计量电力的地方都需要它。这种加药是通过快速接通和关闭电流来产生所需的平均值来进行的。这项技术减少了我们的碳足迹,每年为英国经济贡献近500亿英镑,并为400多家英国公司提供了82,000个技术岗位(2016年数据)。最近,用碳化硅(SiC)或氮化镓(GaN)制造的超高速晶体管取代了硅晶体管,电力电子行业正在发生重大变化。这些新型晶体管的开关速度提高了10倍,从而使功率转换器的能量损失减少了75%,并使转换器的尺寸缩小到以前的一半以下。这使得将它们安装到其他系统中变得容易得多,例如电动汽车,从而使汽车更轻,有更多的电池空间。这个项目是为了帮助最大限度地发挥新型晶体管的潜力。许多公司都在努力采用它们,因为虽然非常快速的交换提供了提高效率和大大缩小系统尺寸的好处,但它也产生了电磁干扰、设备和系统可靠性等问题。晶体管开关电流的速度非常快(不到10纳秒,光传播3米的时间),工程师们无法准确测量在这段时间内电压和电流的变化,即使使用最好的设备,这意味着很难解决诸如干扰之类的问题。正因为如此,即使是领先的公司也在放慢这些新型晶体管的速度,并失去了它们的一些效率潜力。我们的项目开发小型、低成本的传感器,使这些纳秒级的变化可见。它们将使工程师能够准确地看到晶体管是如何开关的,从而帮助他们开发出更好、更小、更轻、更可靠的电力电子设备。它们将允许计算机控制的SiC和GaN功率转换器在产生过多电磁噪声时进行检测,并通过更智能的开关来减少这种噪音。它将允许电源电路检测外部短路,并在它们损坏电源转换器之前将其隔离。我们还在开发传感器,为工程师或控制系统直接提供他们需要的信息(例如,设备温度),而不是从伏特和安培间接推断,使测量更快,更有效。传感器的工作原理是通过线圈、导电板或天线检测电场或磁场。接收到的信号被送入传感器内部的芯片,该芯片计算所需的参数。这些新的SiC和GaN晶体管首次使电路板上的小型场传感器成为可能,因为随着信号速度的增加,这些信号的波长变得更短(厘米级),这意味着它们的场可以用毫米大小的线圈或天线接收。为了确保我们开发行业需求,我们正在与汽车,可再生能源,半导体,具有深厚行业经验的商业研发组织的12个合作伙伴合作,我们正在接受新的合作者的要求。我们的项目为合作伙伴和其他英国公司和大学提供样品传感器。他们的反馈以及与合作伙伴的讨论有助于我们确定研究的优先级,并确保我们将研究资金用于解决最重要的问题。我们提供研讨会,帮助工程师掌握最新的先进测量技术,并将我们的结果在线(出版物和专门的网站)供公司使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernard Stark其他文献

Pancreatic calcification in an 18-yr-old patient following gallstone pancreatitis and recurrent pseudocysts
  • DOI:
    10.1007/bf02787473
  • 发表时间:
    1997-10-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Alan C. Yao;Mitchell Locke;Simmy Bank;Bernard Stark;Avram Cooperman
  • 通讯作者:
    Avram Cooperman
Mesenteric chylous cyst
  • DOI:
    10.1016/j.gie.2005.06.064
  • 发表时间:
    2006-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ari Wiesen;Kostas Sideridis;Bernard Stark;Simmy Bank
  • 通讯作者:
    Simmy Bank
Electrothermal Power Cycling to Failure of Discrete Planar, Symmetrical Double-Trench and Asymmetrical Trench SiC MOSFETs
电热功率循环导致分立平面、对称双沟槽和非对称沟槽 SiC MOSFET 失效
  • DOI:
    10.1109/ojpel.2023.3326909
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Juefei Yang;S. Jahdi;Renze Yu;Bernard Stark
  • 通讯作者:
    Bernard Stark

Bernard Stark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernard Stark', 18)}}的其他基金

Quietening ultra-low-loss SiC & GaN waveforms
静音超低损耗 SiC
  • 批准号:
    EP/R029504/1
  • 财政年份:
    2018
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Research Grant
SAVVIE: Staying alive in variable, intermittent, low-power environments
SAVVIE:在多变、间歇性、低功耗环境中保持活力
  • 批准号:
    EP/K011979/1
  • 财政年份:
    2013
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Research Grant
Pulse quietening at source for higher-frequency power and signal switching
在源头进行脉冲静噪,以实现更高频率的电源和信号切换
  • 批准号:
    EP/K021273/1
  • 财政年份:
    2013
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Research Grant
Next Generation Energy-Harvesting Electronics - holistic approach 1763
下一代能量收集电子设备 - 整体方法 1763
  • 批准号:
    EP/G06881X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Research Grant

相似国自然基金

病原菌群体感应监管(policing quorum sensing)的生理生态机理及分子调控机制
  • 批准号:
    31570490
  • 批准年份:
    2015
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
水稻OsCAS(Calcium-sensing Receptor)基因的功能分析
  • 批准号:
    30900771
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目
生防假单胞菌群体感应(quorum-sensing)系统的鉴定和功能分析
  • 批准号:
    30370952
  • 批准年份:
    2003
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Research Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
  • 批准号:
    2343469
  • 财政年份:
    2024
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2304766
  • 财政年份:
    2022
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
  • 批准号:
    2213688
  • 财政年份:
    2022
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: SpecScape: Enabling a Global Spectrum Observatory through Mobile, Wide-band Spectrum Sensing Kits and a Software Ecosystem
合作研究:CCRI:新:SpecScape:通过移动、宽带频谱传感套件和软件生态系统实现全球频谱观测站
  • 批准号:
    2213689
  • 财政年份:
    2022
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
CAREER: Wide Area Wireless Sensing: Theories and Applications
职业:广域无线传感:理论与应用
  • 批准号:
    2144668
  • 财政年份:
    2022
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120276
  • 财政年份:
    2021
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120371
  • 财政年份:
    2021
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120396
  • 财政年份:
    2021
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
SCC-CVIC-PG Track A: Enabling Safe, Community-wide Bike-to-Work Strategies via Participatory Sensing
SCC-CVIC-PG 轨道 A:通过参与式传感实现安全、社区范围内的自行车上班策略
  • 批准号:
    2044034
  • 财政年份:
    2021
  • 资助金额:
    $ 146.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了