Reengineering of Glycan Binding Specificity for Targeted Cellular Delivery.
重新设计用于靶向细胞递送的聚糖结合特异性。
基本信息
- 批准号:EP/W022842/1
- 负责人:
- 金额:$ 55.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are four major groups of biological molecules, nucleic acids (DNA and RNA), proteins, carbohydrates (sugars) and lipids (fats). The reengineering of these biological molecules is the focus of the field of synthetic biology; whereby proteins and nucleic acids are designed from scratch, or redesigned based on a natural blueprint, to perform functions not seen in nature. Proteins are the major workhorses of biological processes and over the last 20 years many advances have been made to reengineer proteins to perform new tasks. Proteins are responsible for many biological functions, for example: individually as enzymes; with each other to respond to environmental change; with nucleic acids to turn gene expression on or off; with sugars for communication between cells; or with fats to form transporters across biological membranes. Of these protein-based interactions, correspondingly little synthetic biology work has focused on the design of protein-sugar interactions, despite sugars being a major component of biological systems. Sugars are most commonly known as a foodstuff, such as sucrose (table sugar), or for maintaining structure, such as cellulose in trees. However, sugars are also present in great abundance on the outside of all our cells, forming a structure called the 'glycocalyx' (sugar-husk). The sugar molecules which form this husk are attached to the cell via proteins or lipids. Interaction with the glycocalyx allows for cellular adhesion and communication, controls cellular behaviour and defence, and forms a physical barrier against infection by microbes. There are many variations in the types of sugars which make up this glycocalyx and different cell types have a different sugary composition. In fact, the sugar composition of a cell can change during the phases of replication and when cells are diseased, such as in cancer. We call this sugar composition the 'glyco-code', and in this work, I will use this glyco-code to differentiate between cell types, including healthy from diseased.Often pathogens, microbial toxins and viruses, can use these sugars in the glycocalyx to trick the cell into absorbing them, including a group of toxins known as the AB5 toxin family, which includes cholera toxin from Vibrio cholera. This toxin attaches to a specific sugar which is found predominately in the glycocalyx of cells in the intestine. As a result, the toxin is absorbed, and the cell behaviour is changed, causing it to expel water into the intestine leading to the familiar cholera poisoning symptom, diarrhoea. These AB5 toxins are formed from two components the toxic A-subunit and the non-toxic B5-subunit. The cholera toxin B5-subunit (CTB), although non-toxic, is important as it binds to the sugars on the outside of the cell, and triggers absorption. This natural mechanism can be hijacked by redesigning CTB to bind to different sugar molecules; hence, reengineering this CTB molecule as a cell selective absorption tool would allow an attached cargo to be transported into the cell interior.In this fellowship I will use novel computational approaches combined with experimental selection and directed evolution to reengineer these B5-subunits to bind to a different sugar, which is only found on the surface of some cancer cells, including melanoma (skin cancer) and neuroblastoma (a childhood cancer of the nervous tissue). By reengineering CTB to bind to these sugars, it can be used to transport diagnostic and therapeutic molecules into specific cancer cells. The demonstration of this redesign process will allow future engineering of other protein-sugar interactions. Such as reengineering other B5-subunits against a range of glycolipids, to generate a selection of molecules which can specifically target a range of cells; such a synthetic biology toolkit will be of great importance in diagnostics and drug delivery.
生物分子主要有四类:核酸(DNA和RNA)、蛋白质、碳水化合物(糖)和脂质(脂肪)。这些生物分子的再工程是合成生物学领域的焦点;由此蛋白质和核酸从头开始设计,或基于天然蓝图重新设计,以执行自然界中看不到的功能。蛋白质是生物过程的主要工具,在过去的20年里,人们在重新设计蛋白质以执行新任务方面取得了许多进展。蛋白质负责许多生物学功能,例如:单独作为酶;彼此响应环境变化;与核酸一起打开或关闭基因表达;与糖一起进行细胞之间的通信;或与脂肪一起形成跨生物膜的转运蛋白。在这些基于蛋白质的相互作用中,相应地很少有合成生物学工作集中在蛋白质-糖相互作用的设计上,尽管糖是生物系统的主要组成部分。糖通常被称为食品,如蔗糖(蔗糖),或用于维持结构,如树木中的纤维素。然而,糖也大量存在于我们所有细胞的外部,形成一种称为“糖萼”(糖壳)的结构。形成这种外壳的糖分子通过蛋白质或脂质附着在细胞上。与糖萼的相互作用允许细胞粘附和通信,控制细胞行为和防御,并形成抵抗微生物感染的物理屏障。构成糖萼的糖的类型有许多变化,不同的细胞类型具有不同的糖组成。事实上,细胞的糖组成可以在复制阶段和细胞患病时(如癌症)发生变化。我们称这种糖成分为“糖密码”,在这项工作中,我将使用这种糖密码来区分细胞类型,包括健康和患病的细胞。通常病原体,微生物毒素和病毒可以利用糖萼中的这些糖来欺骗细胞吸收它们,包括一组称为AB 5毒素家族的毒素,其中包括来自霍乱弧菌的霍乱毒素。这种毒素附着在一种特殊的糖上,这种糖主要存在于肠细胞的糖萼中。结果,毒素被吸收,细胞行为改变,导致它将水排入肠道,导致常见的霍乱中毒症状,腹泻。这些AB 5毒素由两种组分形成:毒性A亚基和无毒B5亚基。霍乱毒素B5亚基(CTB)虽然无毒,但很重要,因为它与细胞外部的糖结合,并触发吸收。这种天然机制可以通过重新设计CTB与不同的糖分子结合来劫持;因此,将这种CTB分子重新设计为细胞选择性吸收工具将允许将附着的货物运输到细胞内部。在本研究中,我将使用新的计算方法结合实验选择和定向进化来重新设计这些B5亚基以结合不同的糖,它只存在于一些癌细胞的表面,包括黑色素瘤(皮肤癌)和神经母细胞瘤(神经组织的儿童癌症)。通过重组CTB以结合这些糖,它可以用于将诊断和治疗分子运送到特定的癌细胞中。这种重新设计过程的演示将允许未来的其他蛋白质-糖相互作用的工程。例如针对一系列糖脂重新设计其他B5亚基,以产生可以特异性靶向一系列细胞的分子选择;这样的合成生物学工具包将在诊断和药物递送中具有重要意义。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Mutagenic Plasticity of the Cholera Toxin B-Subunit Surface Residues: Stability and Affinity
- DOI:10.3390/toxins16030133
- 发表时间:2024-03-01
- 期刊:
- 影响因子:4.2
- 作者:Au,Cheuk W.;Manfield,Iain;Ross,James F.
- 通讯作者:Ross,James F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Ross其他文献
Good Psychiatric Management of Borderline Personality Disorder: Foundations and Future Challenges.
边缘性人格障碍的良好精神病学管理:基础和未来的挑战。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Paul S. Links;James Ross - 通讯作者:
James Ross
Developing a new resetting tool for controlling rats
开发一种新的控制老鼠的重置工具
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.6
- 作者:
E. Murphy;Tom Agnew;T. Sjoberg;C. Eason;D. MacMorran;James Ross - 通讯作者:
James Ross
CMR 1-01 - Cardiac Field Cycling Imaging at 0.2 T
CMR 1-01 - 0.2T 心脏场循环成像
- DOI:
10.1016/j.jocmr.2024.100102 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6.100
- 作者:
James Ross;Gareth Davies;Robert Stormont;Dana Dawson - 通讯作者:
Dana Dawson
Dynamic changes in human brain connectivity following ultrasound neuromodulation
超声神经调节后人类大脑连接性的动态变化
- DOI:
10.1038/s41598-024-81102-w - 发表时间:
2024-12-03 - 期刊:
- 影响因子:3.900
- 作者:
Cyril Atkinson-Clement;Mohammad Alkhawashki;Marilyn Gatica;James Ross;Marcus Kaiser - 通讯作者:
Marcus Kaiser
Promoting completion of health care proxies following hospitalization. A randomized controlled trial in a community hospital.
促进住院后医疗保健代理的完成。
- DOI:
10.1001/archinte.1995.00430200088012 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Brendan M. Reilly;Michael Wagner;James Ross;C. Magnussen;L. Papa;Jeffrey Ash - 通讯作者:
Jeffrey Ash
James Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Ross', 18)}}的其他基金
Electronic Spectrum Analysis Techniques
电子频谱分析技术
- 批准号:
7915632 - 财政年份:1979
- 资助金额:
$ 55.66万 - 项目类别:
Standard Grant
相似国自然基金
系统性探索不同N-glycan修饰对Interferonβ活性和稳定性影响
- 批准号:21877063
- 批准年份:2018
- 资助金额:61.4 万元
- 项目类别:面上项目
糖药物蛋白Interferonβ N-glycan的均一、人源化改造
- 批准号:81102361
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating mechanisms underlying multivalency modulating lectin-glycan binding and assembly properties-implications for lectin function regulation
阐明多价调节凝集素-聚糖结合和组装特性的机制-对凝集素功能调节的影响
- 批准号:
BB/Y005856/1 - 财政年份:2024
- 资助金额:
$ 55.66万 - 项目类别:
Research Grant
Understanding the Intestinal Survival Strategy of Altruistic Bifidobacteria by Human Glycan Binding from the Molecular Structure
从分子结构了解利他双歧杆菌通过人类聚糖结合的肠道生存策略
- 批准号:
23H00322 - 财政年份:2023
- 资助金额:
$ 55.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding the molecular mechanisms of Akkermansia glycan-binding adhesins in shaping microbial communities and balancing intestinal inflammation in response to host signals
了解阿克曼氏菌聚糖结合粘附素在塑造微生物群落和平衡肠道炎症以响应宿主信号方面的分子机制
- 批准号:
10723996 - 财政年份:2023
- 资助金额:
$ 55.66万 - 项目类别:
Directed Evolution of Mucin Glycan-Binding Proteins
粘蛋白聚糖结合蛋白的定向进化
- 批准号:
473654 - 财政年份:2022
- 资助金额:
$ 55.66万 - 项目类别:
Fellowship Programs
Synthesis of Complex O-Glycans for Probing Glycan-Protein Binding Interactions
用于探测聚糖-蛋白质结合相互作用的复杂 O-聚糖的合成
- 批准号:
576205-2022 - 财政年份:2022
- 资助金额:
$ 55.66万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Development of glycan-binding broadly neutralizing antibody responses in HIV-1 infection
HIV-1感染中聚糖结合广泛中和抗体反应的发展
- 批准号:
2749382 - 财政年份:2022
- 资助金额:
$ 55.66万 - 项目类别:
Studentship
Synthetic glycolipids to investigate the interactome of viral glycan-binding proteins
合成糖脂研究病毒聚糖结合蛋白的相互作用组
- 批准号:
2601332 - 财政年份:2021
- 资助金额:
$ 55.66万 - 项目类别:
Studentship
Directed Evolution of Glycan Binding Proteins for Tumour Associated Carbohydrates
肿瘤相关碳水化合物的聚糖结合蛋白的定向进化
- 批准号:
565680-2021 - 财政年份:2021
- 资助金额:
$ 55.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Plasmonic Glycan Arrays for Highly Sensitive Detection of Glycan-binding Proteins
用于高灵敏度检测聚糖结合蛋白的等离子聚糖阵列
- 批准号:
10081148 - 财政年份:2020
- 资助金额:
$ 55.66万 - 项目类别:
Engineering of glycosyltransferases to obtain glycan binding proteins
糖基转移酶工程以获得聚糖结合蛋白
- 批准号:
10259786 - 财政年份:2020
- 资助金额:
$ 55.66万 - 项目类别: