A biomimetic macromolecular platform for tissue healing and diagnostics at medical device interfaces: a personalised wound dressing model
用于医疗设备接口组织愈合和诊断的仿生大分子平台:个性化伤口敷料模型
基本信息
- 批准号:EP/W023164/1
- 负责人:
- 金额:$ 367.77万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biomimetic biomaterials are materials mimicking the features of natural tissues and mainly advocated for the manufacturing of medical implants capable of achieving a complete integration with the host tissue through biospecific interactions with biomolecules and cells. It is argued that the ability to develop biomaterials capable of biospecific interactions can be exploited also for the development of very specific and sensitive diagnostics targeting disease markers. Prof Matteo Santin has contributed to this field of research since 1991 through many research projects unveiling the links between the surface properties of biomaterials and their interaction with proteins, inflammatory cells and tissue cells. The knowledge acquired has led to the research for new biomimetic biomaterials that, unlike other approaches trying to mimic the natural micro- and macro-structures of tissues, has been focussing on the reproduction of natural features at macromolecular level. In particular, through international academic and industrial collaborations, the research has led to the development of novel methods of biomaterial surface modification mainly based on the chemical grafting of synthetic or natural macromolecules or through the engineering of their roughness; in both cases the aim was to make their surface features similar to those of the natural environment where cells and macromolecule reside and to encourage biospecific recognition processes relevant to tissue healing and diagnosis; these studies have led to the integration of implants through the regeneration of the host tissue at the implant surface and to methods of detection of diseases.This 6-years project will develop a novel platform of biomimetic macromolecules for tissue healing and disease monitoring focussing its application on the development of a novel class of wound dressings with theranostic properties; i.e. dressings able to heal wounds while diagnosing their clinical status. The development of this platform will be pursued through the effort of a multidisciplinary team at the Centre for Regenerative Medicine and Devices, University of Brighton. Unlike previous studies, biochemists will use simulated body fluids to study the formation of the water shell around biomolecules when alone or in proximity of the surface of wound dressing materials and will establish the factors affecting their native structure. The data of molecular solvability will then be used by computer model scientists to produce a database of wettability in 'natural interactions' capable of preserving the biomolecules' native structure. Chemists will design and synthesise new classes of macromolecules according to this database to reproduce the same wettability conditions at the dressing surface and inhibit their unwanted fouling. The novel macromolecules will be coupled to the dressing in conjunction with peptides and sugars known to drive specific bio-recognition processes. Cell biologists will analyse the behaviours of patients' immune and tissue cells when in contact with the novel biomimetic surfaces and compare them with those observed by clinicians at the interface of retrieved wound dressing. The obtained biospecific recognition will be analysed in the context of patient's individual responses and exploited to manufacture tissue healing dressings integrating disease biomarker detection systems based on visual inspection.A range of macromolecules will therefore be designed and synthesised at industrial standard and with relative quality controls to the benefit of industrial partners and on the basis of the principle of 'shared innovation' whereby fundamental knowledge and new technology are applied to various markets and clinical uses promoting industrial synergies and avoiding conflicts of interest. A network of local biomedical industry will benefit from the project outcomes alongside the training provided by the University of Brighton to newly qualified personnel.
仿生生物材料是模仿自然组织特征的材料,主要用于制造能够通过与生物分子和细胞的生物特异性相互作用实现与宿主组织完全整合的医疗植入物。有人认为,开发能够生物特异性相互作用的生物材料的能力也可以用于开发针对疾病标志物的非常特异和敏感的诊断。自1991年以来,Matteo Rumann教授通过许多研究项目为这一研究领域做出了贡献,揭示了生物材料的表面特性与其与蛋白质,炎症细胞和组织细胞相互作用之间的联系。所获得的知识导致了对新的仿生生物材料的研究,与试图模仿组织的天然微观和宏观结构的其他方法不同,仿生生物材料一直专注于在大分子水平上再现自然特征。特别是,通过国际学术和工业合作,该研究导致了主要基于合成或天然大分子的化学接枝或通过其粗糙度工程的生物材料表面改性的新方法的发展;在这两种情况下,目的是使它们的表面特征与细胞和大分子所在的自然环境相似,与组织愈合和诊断相关的识别过程;这些研究已经导致通过在植入物表面再生宿主组织来整合植入物,并导致检测疾病的方法。年的项目将开发一种用于组织愈合和疾病监测的新型仿生大分子平台,其应用重点是开发一类新型伤口敷料,治疗诊断特性;即能够在诊断其临床状态的同时愈合伤口的敷料。该平台的开发将通过布莱顿大学再生医学和设备中心的多学科团队的努力进行。与以前的研究不同,生物化学家将使用模拟体液来研究生物分子单独或接近伤口敷料材料表面时水壳的形成,并将确定影响其天然结构的因素。然后,计算机模型科学家将使用分子可溶解性的数据来生成能够保留生物分子的天然结构的“自然相互作用”中的润湿性数据库。化学家将根据该数据库设计和合成新类别的大分子,以在敷料表面重现相同的润湿性条件,并抑制其不必要的污垢。新型大分子将与已知驱动特定生物识别过程的肽和糖结合到敷料上。细胞生物学家将分析患者的免疫和组织细胞与新型仿生表面接触时的行为,并将其与临床医生在回收伤口敷料界面上观察到的行为进行比较。所获得的生物特异性识别将在患者个体反应的背景下进行分析,并用于制造基于视觉检查的集成疾病生物标志物检测系统的组织愈合敷料。因此,将按照工业标准设计和合成一系列大分子,并进行相关质量控制,以使工业合作伙伴受益,并基于“共享创新”原则,知识和新技术应用于各种市场和临床用途,促进工业协同作用,避免利益冲突。当地生物医学产业网络将受益于项目成果以及布莱顿大学为新合格人员提供的培训。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of theranostic wound dressings: harnessing the knowledge of biospecific interactions at the biomaterial interface to promote healing and identify biomarkers.
治疗诊断伤口敷料的开发:利用生物材料界面上的生物特异性相互作用的知识来促进愈合并识别生物标志物。
- DOI:10.1080/17434440.2023.2181694
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Saberianpour S
- 通讯作者:Saberianpour S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matteo Santin其他文献
A novel, microfluidic high-throughput single-cell encapsulation of human bone marrow mesenchymal stromal cells
一种新型微流体高通量单细胞封装人骨髓间充质基质细胞
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Narjes Rashidi;Alex Slater;Giordana Peregrino;Matteo Santin - 通讯作者:
Matteo Santin
Gravity effects on lower limb perfusion observed during a series of parabolic flights
在一系列抛物线飞行过程中观察到的重力对下肢灌注的影响
- DOI:
10.1016/j.actaastro.2025.01.010 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:3.400
- 作者:
Justine Tansley;Nicolas Miché;Marco Bernagozzi;Simon Cahill;Anastasios Georgoulas;Matteo Santin;Rachel Forss - 通讯作者:
Rachel Forss
Matteo Santin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
应用电镜和计算机三维重构技术研究蛋白质RecA与DNA形成的生物大分子复合物的结构和功能
- 批准号:30470349
- 批准年份:2004
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10707375 - 财政年份:2022
- 资助金额:
$ 367.77万 - 项目类别:
Resource for Macromolecular Modeling and Visualization
高分子建模和可视化资源
- 批准号:
10431033 - 财政年份:2022
- 资助金额:
$ 367.77万 - 项目类别:
Mapping Protein Social Network Dynamics with Photoproximity Profiling Platforms
使用 Photoproximity 分析平台绘制蛋白质社交网络动态
- 批准号:
10707896 - 财政年份:2022
- 资助金额:
$ 367.77万 - 项目类别:
Resource for Macromolecular Modeling and Visualization
高分子建模和可视化资源
- 批准号:
10710372 - 财政年份:2022
- 资助金额:
$ 367.77万 - 项目类别:
Ultra-stable, photon-efficient cryogenic super-resolution fluorescence imaging for visualizing vitrified biological samples with molecular-scale resolution
超稳定、光子效率高的低温超分辨率荧光成像,用于以分子级分辨率可视化玻璃化生物样品
- 批准号:
10510195 - 财政年份:2022
- 资助金额:
$ 367.77万 - 项目类别:
cryoEDU: An online curriculum and software platform for hands-on learning in single-particle cryoEM and cryoET
CryoEDU:用于单粒子 CryoEM 和 CryoET 实践学习的在线课程和软件平台
- 批准号:
10663238 - 财政年份:2021
- 资助金额:
$ 367.77万 - 项目类别:
cryoEDU: An online curriculum and software platform for hands-on learning in single-particle cryoEM and cryoET
CryoEDU:用于单粒子 CryoEM 和 CryoET 实践学习的在线课程和软件平台
- 批准号:
10436923 - 财政年份:2021
- 资助金额:
$ 367.77万 - 项目类别:
cryoEDU: An online curriculum and software platform for hands-on learning in single-particle cryoEM and cryoET
CryoEDU:用于单粒子 CryoEM 和 CryoET 实践学习的在线课程和软件平台
- 批准号:
10222983 - 财政年份:2021
- 资助金额:
$ 367.77万 - 项目类别:
A Computational Platform for In-Situ Structure Determination at Near-Atomic Resolution using Cryo-Electron Tomography
使用冷冻电子断层扫描以近原子分辨率原位结构测定的计算平台
- 批准号:
10581369 - 财政年份:2021
- 资助金额:
$ 367.77万 - 项目类别:














{{item.name}}会员




