Particles At eXascale on High Performance Computers (PAX-HPC)

高性能计算机上的 eXascale 粒子 (PAX-HPC)

基本信息

  • 批准号:
    EP/W026775/1
  • 负责人:
  • 金额:
    $ 387.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Many recent breakthroughs would not have been possible without access to the most advanced supercomputers. For example, for the Chemistry Nobel Prize winners in 2013, supercomputers were used to develop powerful computing programs and software, to understand and predict complex chemical processes or for the Physics Nobel Prize in 2017 supercomputers helped to make complex calculations to detect hitherto theoretical gravitational waves. The advent of exascale systems is the next dramatic step in this evolution. Exascale supercomputing will enable new scientific endeavour in wide areas of UK science, including advanced materials modelling, engineering and astrophysics. For instance, solving atomic and electronic structures with increasing realism to solve major societal challenges - quantum mechanically detailed simulation and steering design of batteries, electrolytic cells, solar cells, computers, lighting, and healthcare solutions, as well as enabling end-to-end simulation of transients (such as bird strike) in a jet engine, to simulation of tsunami waves over-running a series of defensive walls, or understanding the universe at a cosmological scale. Providing a level of detail to describe accurately these challenging problems can be achieved using particle-based models that interact in complicated dance that can be visualised or analysed to see how our model of nature would react in various situations. To model problems as complex as outlined the ways the particles interact must be flexible and tailored to the problem and vast quantities of particles are needed (and or complicated interactions). This proposal takes on the challenge of efficiently calculating the interacting particles on vast numbers of computer cores. The density of particles can be massively different at different locations, and it is imperative to find a way for the compute engines to have similar amounts of work - novel algorithms to distribute the work over different types of compute engines will be developed and used to develop and run frontier simulations of real-world challenges. There is a high cost of both purchasing and running an exascale system, so it is imperative that appropriate software is developed before users gain access to exascale facilities. By definition, exascale supercomputers will be three orders of magnitude more powerful than current UK facilities, which will be achieved by a larger number of cores and the use of accelerators (based on gaming graphic cards, for example). This transition in computer power represents both an anticipated increase in hardware complexity and heterogeneity, and an increase in the volume of communication between cores that will hamper algorithms used on UK's current supercomputers. Many, if not all, of our software packages will require major changes before the hardware architectures can be fully exploited. The investigators of this project are internationally leading experts in developing (enabling new science) and optimising (making simulations more efficient) state-of-the-art particle-based software for running simulations on supercomputers, based here and abroad. Software that we have developed is used both in academia and in industry. In our project we will develop solutions and implement these in our software and, importantly, train Research Software Engineers to become internationally leading in the art of exploiting exascale supercomputers for scientific research.
如果没有最先进的超级计算机,最近的许多突破是不可能的。例如,对于2013年诺贝尔化学奖获得者来说,超级计算机被用来开发强大的计算程序和软件,以理解和预测复杂的化学过程,或者对于2017年诺贝尔物理学奖,超级计算机帮助进行复杂的计算来探测迄今为止的理论引力波。 艾级系统的出现是这一演变的下一个戏剧性步骤。Exascale超级计算将在英国科学的广泛领域实现新的科学努力,包括先进材料建模,工程和天体物理学。例如,解决原子和电子结构越来越现实,以解决主要的社会挑战-电池,电解电池,太阳能电池,计算机,照明和医疗保健解决方案的量子力学详细模拟和转向设计,以及实现瞬态的端到端模拟(如鸟撞)在喷气发动机中,模拟海啸波越过一系列防御墙,或在宇宙学尺度上理解宇宙。提供一定程度的细节来准确描述这些具有挑战性的问题,可以使用基于粒子的模型来实现,这些模型在复杂的舞蹈中相互作用,可以可视化或分析,以了解我们的自然模型在各种情况下会如何反应。为了模拟像上面描述的那样复杂的问题,粒子相互作用的方式必须是灵活的,并且针对问题进行调整,并且需要大量的粒子(和/或复杂的相互作用)。这个提议面临的挑战是在大量的计算机核心上有效地计算相互作用的粒子。粒子的密度在不同的位置可能会有很大的不同,必须找到一种方法让计算引擎拥有相似的工作量-将开发新的算法来将工作分配到不同类型的计算引擎上,并用于开发和运行现实世界挑战的前沿模拟。 购买和运行一个亿级系统的成本都很高,因此在用户使用亿级设施之前必须开发适当的软件。根据定义,百亿亿次超级计算机将比目前英国的设施强大三个数量级,这将通过更多的核心和使用加速器(例如基于游戏图形卡)来实现。计算机能力的这种转变代表了硬件复杂性和异构性的预期增加,以及核心之间通信量的增加,这将阻碍英国当前超级计算机上使用的算法。我们的许多软件包(如果不是全部的话)在硬件架构被充分利用之前将需要进行重大更改。该项目的研究人员是国际领先的专家,致力于开发(实现新科学)和优化(使模拟更有效)最先进的基于粒子的软件,用于在国内外的超级计算机上运行模拟。我们开发的软件在学术界和工业界都有使用。在我们的项目中,我们将开发解决方案并在我们的软件中实现这些解决方案,重要的是,培训研究软件工程师,使其在利用exascale超级计算机进行科学研究方面处于国际领先地位。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel local time stepping for rigid bodies represented by triangulated meshes
  • DOI:
    10.48550/arxiv.2309.15417
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Noble;Tobias Weinzierl
  • 通讯作者:
    Peter Noble;Tobias Weinzierl
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Woodley其他文献

Scott Woodley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Woodley', 18)}}的其他基金

Materials Chemistry HEC Consortium (MCC)
材料化学 HEC 联盟 (MCC)
  • 批准号:
    EP/X035859/1
  • 财政年份:
    2023
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Materials and Molecular Modelling Exascale Design and Development Working Group
材料和分子建模百亿亿级设计和开发工作组
  • 批准号:
    EP/V001507/1
  • 财政年份:
    2020
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
The Materials and Molecular Modelling Hub
材料和分子建模中心
  • 批准号:
    EP/T022213/1
  • 财政年份:
    2020
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
HIGH END COMPUTING MATERIALS CHEMISTRY CONSORTIUM
高端计算材料化学联盟
  • 批准号:
    EP/R029431/1
  • 财政年份:
    2018
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Surface and Interface Toolkit for the Materials Chemistry Community
适用于材料化学界的表面和界面工具包
  • 批准号:
    EP/P022235/1
  • 财政年份:
    2017
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Tier 2 Hub in Materials and Molecular Modelling
材料和分子建模二级中心
  • 批准号:
    EP/P020194/1
  • 财政年份:
    2016
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Knowledge Led Structure Prediction for Nanostructures
知识主导的纳米结构结构预测
  • 批准号:
    EP/K038958/1
  • 财政年份:
    2013
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
HPC simulations of complex solids and clusters using static lattice techniques
使用静态晶格技术对复杂固体和团簇进行 HPC 模拟
  • 批准号:
    EP/I03014X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant

相似国自然基金

基于NIC的Exascale级计算机聚合通信卸载关键技术研究
  • 批准号:
    61202124
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER : Towards Exascale Performance of Parallel Applications
职业:迈向并行应用的百亿亿级性能
  • 批准号:
    2338077
  • 财政年份:
    2024
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2405142
  • 财政年份:
    2023
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151021
  • 财政年份:
    2022
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151022
  • 财政年份:
    2022
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151020
  • 财政年份:
    2022
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Standard Grant
Integrated Simulation at the Exascale: coupling, synthesis and performance
百亿亿级集成仿真:耦合、综合和性能
  • 批准号:
    EP/W007460/1
  • 财政年份:
    2021
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Integrated Simulation at the Exascale: coupling, synthesis and performance
百亿亿级集成仿真:耦合、综合和性能
  • 批准号:
    EP/W00755X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Research Grant
Research on high-performance and high-dimensional numerical linear algebra applying an asynchronous task mechanism on the exascale computing era
亿兆级计算时代应用异步任务机制的高性能高维数值线性代数研究
  • 批准号:
    19H04127
  • 财政年份:
    2019
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High Performance Computing for Quantum Model Simulations on Exascale Computers
百亿亿级计算机上量子模型模拟的高性能计算
  • 批准号:
    18K11345
  • 财政年份:
    2018
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scalable communication performance prediction using pseudo trace files for beyond-exascale system co-design
使用伪跟踪文件进行可扩展的通信性能预测,以实现超百亿亿次系统协同设计
  • 批准号:
    17K12693
  • 财政年份:
    2017
  • 资助金额:
    $ 387.51万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了