CAREER : Towards Exascale Performance of Parallel Applications
职业:迈向并行应用的百亿亿级性能
基本信息
- 批准号:2338077
- 负责人:
- 金额:$ 55.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-02-01 至 2029-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Each generation of supercomputers is more powerful than the previous, with current systems capable of adding millions of millions of numbers together in a single second. These high-performance machines provide the hardware necessary for scientists and engineers to solve increasingly complex problems and make discoveries through computer simulations. These programs run across the thousands of individual compute cores that make up a supercomputer, with each core executing a portion of the program and communicating messages to other cores as needed. Often, simulations fail to efficiently use the computing power provided by current supercomputers due to significant overheads associated with communication. This project addresses this challenge by reducing communication costs within widely used parallel programs and improving a spectrum of existing applications to allow for novel scientific discoveries. Furthermore, this project will support the revitalization of the CS4ALL course along with hackathon development to introduce computing topics to a diverse student population across the University of New Mexico main and branch campuses.The goals of this project are to minimize communication costs and enhance the performance and scalability of existing parallel applications. This project will develop accurate performance models for emerging heterogeneous architectures to optimize communication within non-linear solvers, simulations, iterative methods, and neural networks. These models will be used to employ several optimization strategies, including graph partitions that minimize performance model-based functions, locality-aware partitioning throughout the widely used algebraic multigrid (AMG) preconditioner, and topology-aware MPI_Allreduce operations. Furthermore, the project will explore specialized optimizations for heterogeneous systems with multiple GPUs per node, including selecting optimal communication paths, utilizing all available CPU cores during communication via threading, and aggregating inter-node messages to reduce data injected into the network. By minimizing communication within foundational numerical methods, this project aims to yield tangible improvements in performance and scalability across a spectrum of applications reliant on these methods.This project is jointly funded by the Software and Hardware Foundations Core Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每一代超级计算机都比上一代更强大,目前的系统能够在一秒钟内将数百万个数字相加。这些高性能机器为科学家和工程师提供了必要的硬件,以解决日益复杂的问题,并通过计算机模拟做出发现。这些程序运行在组成超级计算机的数千个独立计算核心上,每个核心执行程序的一部分,并根据需要与其他核心通信消息。通常,由于与通信相关的大量开销,模拟无法有效地利用当前超级计算机提供的计算能力。该项目通过降低广泛使用的并行程序中的通信成本,并改进现有应用程序的频谱来实现新的科学发现,从而解决了这一挑战。此外,该项目将支持CS4ALL课程的振兴以及黑客松的开发,将计算主题介绍给新墨西哥大学主校区和分校的不同学生群体。该项目的目标是将通信成本降至最低,并增强现有并行应用程序的性能和可扩展性。该项目将为新兴的异质体系结构开发准确的性能模型,以优化非线性求解器、模拟、迭代方法和神经网络中的通信。这些模型将被用来使用几种优化策略,包括最小化基于模型的性能的函数的图分区、在广泛使用的代数多重网格(AMG)预处理器中的位置感知分区以及拓扑感知MPI_ALLREDUE操作。此外,该项目将探索针对每个节点具有多个图形处理器的异类系统的专门优化,包括选择最佳通信路径,在通过线程进行通信期间利用所有可用的CPU核心,以及聚合节点间消息以减少注入网络的数据。通过最大限度地减少基础数值方法中的交流,该项目旨在通过依赖这些方法的一系列应用程序在性能和可扩展性方面产生切实的改进。该项目由软件和硬件基础核心计划和既定的激励竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda Bienz其他文献
Node aware sparse matrix-vector multiplication
节点感知稀疏矩阵向量乘法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Amanda Bienz;W. Gropp;Luke N. Olson - 通讯作者:
Luke N. Olson
A More Scalable Sparse Dynamic Data Exchange
更具可扩展性的稀疏动态数据交换
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Geyko;Gerald Collom;Derek Schafer;Patrick Bridges;Amanda Bienz - 通讯作者:
Amanda Bienz
A Locality-Aware Bruck Allgather
具有地域意识的布鲁克·阿尔盖特 (Bruck Allgather)
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Amanda Bienz;Shreemant Gautam;Amun Kharel - 通讯作者:
Amun Kharel
Modeling Data Movement Performance on Heterogeneous Architectures
对异构架构上的数据移动性能进行建模
- DOI:
10.1109/hpec49654.2021.9622742 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amanda Bienz;Luke N. Olson;W. Gropp;S. Lockhart - 通讯作者:
S. Lockhart
Reducing communication in algebraic multigrid with multi-step node aware communication
通过多步节点感知通信减少代数多重网格中的通信
- DOI:
10.1177/1094342020925535 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Amanda Bienz;W. Gropp;Luke N. Olson - 通讯作者:
Luke N. Olson
Amanda Bienz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda Bienz', 18)}}的其他基金
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 55.78万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
- 批准号:
2338512 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Standard Grant
CAREER: Towards a comprehensive model of seismicity throughout the seismic cycle
职业:建立整个地震周期地震活动的综合模型
- 批准号:
2339556 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Continuing Grant
Sexual offence interviewing: Towards victim-survivor well-being and justice
性犯罪面谈:为了受害者-幸存者的福祉和正义
- 批准号:
DE240100109 - 财政年份:2024
- 资助金额:
$ 55.78万 - 项目类别:
Discovery Early Career Researcher Award