Transmission Channels Measurements and Communication System Design for Future mm Wave Communications (mm Wave TRACCS)
未来毫米波通信的传输通道测量和通信系统设计(毫米波TRACCS)
基本信息
- 批准号:EP/W027151/1
- 负责人:
- 金额:$ 100.2万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As mobile radio systems developed, their operating frequency increased to the millimeter (mm) wave band (> 30 GHz) first used in the fifth-generation mobile radio network (5G). Now, as we look beyond 5G, higher frequencies are being considered with increased interest in the 140-170 GHz (termed D-band) and beyond (275 GHz band). At these frequencies, where there is plenty of available spectrum to satisfy the spectrum hungry applications of wireless systems, new designs are required, with little work done in this area world-wide. This proposal brings the complementary expertise of three world leading UK research groups, to research, design and experimentally demonstrate systems working at these frequencies, in an integrative and holistic fashion. For such work, there are three key challenges relating to the radio channel and the signal and system design.Challenge 1: to design wireless communication systems, it is paramount to have a verifiable model of the physical propagation channel by collecting measurement data from a specialist and bespoke designed equipment termed "channel sounder", which sends signals over the air and the receiver measures these signals after propagation. Such a model depends on several physical factors, but mainly the transmission signal parameters e.g. the frequency of transmission, the bandwidth of the signal, and the propagation channel physical parameters, such as the channel size and environment and whether it is indoors or outdoors, environmental factors, presence of obstacles, water moisture, pollution and other factors. Professor Salous and her group at Durham has been building channel sounders for over thirty years and the models she has developed are considered amongst the best in the world, used by regulators, industry and the United Nations through the International Telecommunications Union, (ITU). Professor Salous proposes to design and test new channel sounding in the D Band and at the higher 275 GHz band. These will be unique sounders and the aim is to develop unique models and set the standards for future generation wireless systems. The models will be verified in a practical setting through collaboration with the teams at QMUL and UCL. Challenge 2: The transmission of information at high frequencies requires specialist circuit and equipment design. Whilst there are several circuits for such signals, there are few antennas that can transmit and receive the signals and process them spatially. Professor Yang Hao at QMUL, who has been designing antennas for high frequencies for nearly three decades, will design specialist antennas, to be manufactured using simple 3D printing processes, to integrate to the system designed at Durham for full channel measurements. The designs will be optimized with consultation between the teams and taking the channel models into account. The outcome is a system with multiple antennas that can focus the transmission beams and change their shape and direction (a process termed beam forming) so that a system can be constructed that will fully utilize the benefits of the high frequencies and link to signals addressed by the UCL team.Challenge 3: for the past 20 years the UCL team, led by Professor Darwazeh, has designed and demonstrated the use of specialist signals for mobile and wireless systems that can maximise the amount of information while minimizing the energy required for good signal transmission; these processes are termed spectral and energy efficiencies. UCL will design spectrally and energy efficient signals, based on the D Band channel models derived at Durham and suitable for transmission using the antennas designed by QMUL; the outcome will be a complete transmission system at D Band with projected bit rates beyond 50 Gbit/s; nearly an order of magnitude beyond what can be achieved using 5G systems.The three teams bring strong industrial support to achieve what is predicted to be a world first and which brings interest from all sectors.
随着移动的无线电系统的发展,它们的工作频率增加到第五代移动的无线电网络(5G)中首次使用的毫米(mm)波段(> 30 GHz)。现在,当我们超越5G时,人们正在考虑更高的频率,对140-170 GHz(称为D波段)和更高的频率(275 GHz波段)越来越感兴趣。在这些频率上,有大量可用频谱来满足无线系统的频谱需求,需要新的设计,而在世界范围内,在这一领域的工作很少。该提案将三个世界领先的英国研究小组的互补专业知识,以综合和整体的方式研究,设计和实验演示在这些频率下工作的系统。对于这样的工作,有三个关键的挑战与无线电信道和信号和系统的设计。挑战1:设计无线通信系统,这是至关重要的,有一个可验证的模型的物理传播信道,通过收集测量数据从专业和定制设计的设备称为“信道探测器”,它发送信号在空中和接收器测量这些信号传播后。这种模型取决于若干物理因素,但主要是传输信号参数,例如传输频率、信号带宽,以及传播信道物理参数,例如信道大小和环境以及是室内还是室外、环境因素、障碍物的存在、水湿度、污染和其他因素。Salous教授和她在达勒姆的团队已经建立了三十多年的通道发声器,她开发的模型被认为是世界上最好的,被监管机构,工业界和联合国通过国际电信联盟(ITU)使用。Salous教授建议在D波段和更高的275 GHz波段设计和测试新的信道探测。这些将是独特的发声器,目的是开发独特的模型,并为下一代无线系统设定标准。这些模型将通过与QMUL和UCL的团队合作在实际环境中进行验证。挑战2:高频信息传输需要专业的电路和设备设计。虽然有几个电路用于这种信号,但很少有天线可以发送和接收信号并在空间上处理它们。QMUL的杨浩教授近三十年来一直在设计高频天线,他将设计专业天线,使用简单的3D打印工艺制造,以集成到达勒姆设计的全通道测量系统中。设计将通过团队之间的协商进行优化,并考虑到渠道模型。其结果是一个具有多个天线的系统,可以聚焦传输波束并改变其形状和方向(称为波束形成的过程),以便可以构建一个系统,该系统将充分利用UCL团队解决的高频和链接信号的好处。挑战3:在过去的20年里,由Darwazeh教授领导的UCL团队,已经设计并演示了用于移动的和无线系统的专业信号的使用,这些信号可以最大限度地增加信息量,同时最小化良好信号传输所需的能量;这些过程称为频谱和能量效率。UCL将根据在达勒姆得出的D波段信道模型设计频谱和能量有效的信号,并适合使用QMUL设计的天线进行传输;结果将是D波段的完整传输系统,预计比特率超过50 Gbit/s;这三个团队带来了强大的工业支持,以实现预期的目标。成为世界第一,吸引了各界的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S Salous其他文献
S Salous的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S Salous', 18)}}的其他基金
PATRICIAN: New Paradigms for Body Centric Wireless Communications at MM Wavelengths
PATRICAN:MM 波长以身体为中心的无线通信新范式
- 批准号:
EP/I00923X/1 - 财政年份:2011
- 资助金额:
$ 100.2万 - 项目类别:
Research Grant
An experimental investigation into the feasibility of MIMO techniques within the HF band
HF 频段内 MIMO 技术可行性的实验研究
- 批准号:
EP/D036666/1 - 财政年份:2006
- 资助金额:
$ 100.2万 - 项目类别:
Research Grant
相似国自然基金
超极化激活阳离子通道(HCN channels)参与吗啡成瘾的功能及神经环路机制研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
相似海外基金
Transmission Channels Measurements and Communication System Design for Future mmWave Communications (mmWave TRACCS)
未来毫米波通信的传输通道测量和通信系统设计 (mmWave TRACCS)
- 批准号:
EP/W026732/1 - 财政年份:2022
- 资助金额:
$ 100.2万 - 项目类别:
Research Grant
Transmission Channels Measurements and Communication System Design for Future MM-wave Communications (mm Wave TRACCS)
未来毫米波通信的传输通道测量和通信系统设计(毫米波TRACCS)
- 批准号:
EP/W026252/1 - 财政年份:2022
- 资助金额:
$ 100.2万 - 项目类别:
Research Grant
DRVCF, a new optical method for real-time, high resolution, intramolecular distance measurements in conducting ion channels
DRVCF,一种新的光学方法,用于传导离子通道中的实时、高分辨率、分子内距离测量
- 批准号:
9322172 - 财政年份:2017
- 资助金额:
$ 100.2万 - 项目类别:
Collaborative Research: Experimental and numerical studies of droplet formation and cell encapsulation in micro-channels for high-throughput electrical measurements
合作研究:微通道中液滴形成和细胞封装的实验和数值研究,用于高通量电测量
- 批准号:
1202216 - 财政年份:2012
- 资助金额:
$ 100.2万 - 项目类别:
Standard Grant
High-frequency measurements of organic semiconductor channels utilizing 3-dimensional organic transistors toward the developments of high-speed transistors.
利用 3 维有机晶体管对有机半导体通道进行高频测量,以促进高速晶体管的发展。
- 批准号:
24350099 - 财政年份:2012
- 资助金额:
$ 100.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Experimental and numerical studies of droplet formation and cell encapsulation in micro-channels for high-throughput electrical measurements
合作研究:微通道中液滴形成和细胞封装的实验和数值研究,用于高通量电测量
- 批准号:
1201885 - 财政年份:2012
- 资助金额:
$ 100.2万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and numerical studies of droplet formation and cell encapsulation in micro-channels for high-throughput electrical measurements
合作研究:微通道中液滴形成和细胞封装的实验和数值研究,用于高通量电测量
- 批准号:
1202325 - 财政年份:2012
- 资助金额:
$ 100.2万 - 项目类别:
Standard Grant
Temperature Measurements for flames in small channels
小通道中火焰的温度测量
- 批准号:
414822-2011 - 财政年份:2011
- 资助金额:
$ 100.2万 - 项目类别:
University Undergraduate Student Research Awards
Measurements and modelling of double directional radio propagation characteristics on mobile radio channels
移动无线电信道上双向无线电传播特性的测量和建模
- 批准号:
299217-2005 - 财政年份:2009
- 资助金额:
$ 100.2万 - 项目类别:
Discovery Grants Program - Individual
Measurements and modelling of double directional radio propagation characteristics on mobile radio channels
移动无线电信道上双向无线电传播特性的测量和建模
- 批准号:
299217-2005 - 财政年份:2008
- 资助金额:
$ 100.2万 - 项目类别:
Discovery Grants Program - Individual