The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
基本信息
- 批准号:EP/W02778X/1
- 负责人:
- 金额:$ 74.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum computing (QC) is emerging as a critical technology for the future of computing. QC has been shown to provide significant - sometimes even exponential - speedups on various problems, and enable protocols that would be impossible using classical computers. On the other hand, some recent results on ''dequantized algorithms'' show that it is not always straightforward to quantify the quantum advantage on some problems. As a result, the strengths and limitations of quantum computing are still an open problem. One of the best benchmarks to evaluate the theoretical and practical limits of computing is cryptography. Indeed, cryptography is, by definition, the science of basing problems on the limits of computation. Arguably, the maturity of (classical) cryptography reflects our deep understanding of classicalcomputation. In contrast, post-quantum cryptography - building cryptography based on the limits of quantum computing - is very much an emerging field due to our limited understanding of quantum computing.The emergence of post-quantum cryptography presents a tantalizing opportunity to study the theoretical and practical limits of computing. In the near-term, it can constitute a great benchmark for noisy intermediate-scale quantum computing (NISQ), providing concrete answers to questions such as: can a quantum algorithm beat any useful classical algorithm using a NISQ device of 1,000 qbits? In the longterm, more fundamental questions about the limits of quantum computers need to be answered. Beyond the known exponential and quadratic speedups that quantum algorithms can offer, one of the most promising aspects of those algorithms is to offer comparable running times with much reduced memory usage. Memory is arguably one of the most limiting aspects of classical computers. The exponential memory blowup of simulating quantum systems, for example, suggests that understanding the limits of quantum memories is essential. Post-quantum cryptography provides ample problems to study this aspect of quantum computing and answer questions such as: can quantum computing provide exponential memory improvements for some real-life problems?I posit that lattices and codes, fundamental mathematical objects, will play a major role in answering the questions I have put forward. Lattices have emerged as a central object for both quantum computing and cryptography. Lattices and codes play a crucial role in post-quantum cryptography, with three problems standing out as particularly relevant: the shortest vector problem (SVP), the Learning witherror problem (LWE) and the syndrome decoding problem. These problems are fundamentally about the limit of quantum computing and suggest that lattices and codes are hard enough to be quantum hard but structured enough to provide nontrivial primitives. The SVP and LWE play not only a role in cryptography but also in quantum computing. Important search problems such as the dihedral hidden subgroup problem involve both problems. A recent breakthrough in the classical verification of quantum computations relies on LWE. LWE even enables classical parties to participate in secure quantum computation and communications protocols. Therefore, improvements in the understanding of SVP and LWE will benefit both the quantum computing and cryptography community. Furthermore, some recent improvements in lattice algorithms, that come from codes, show the benefit of studying lattices and codes together rather than separately.
量子计算(QC)正在成为未来计算的关键技术。QC已经被证明可以在各种问题上提供显着的-有时甚至是指数级的-加速,并启用使用经典计算机不可能实现的协议。另一方面,最近关于“去量化算法”的一些结果表明,在某些问题上量化量子优势并不总是那么简单。因此,量子计算的优势和局限性仍然是一个悬而未决的问题。评估计算的理论和实践极限的最佳基准之一是密码学。事实上,根据定义,密码学是一门将问题建立在计算极限之上的科学。可以说,(经典)密码学的成熟反映了我们对经典计算的深刻理解。相比之下,后量子密码学--基于量子计算的极限构建密码学--由于我们对量子计算的理解有限,在很大程度上是一个新兴领域。后量子密码学的出现为研究计算的理论和实践极限提供了一个诱人的机会。在短期内,它可以构成噪声中等规模量子计算(NISQ)的一个很好的基准,为以下问题提供具体的答案:量子算法能否击败使用1,000 qbits的NISQ设备的任何有用的经典算法?从长远来看,关于量子计算机极限的更基本的问题需要得到回答。除了量子算法可以提供的已知指数和二次加速之外,这些算法最有前途的方面之一是提供可比的运行时间,同时大大减少内存使用。内存可以说是经典计算机最受限制的方面之一。例如,模拟量子系统的指数存储器爆炸表明,理解量子存储器的极限是至关重要的。后量子密码学提供了大量的问题来研究量子计算的这一方面,并回答一些问题,例如:量子计算能否为一些现实生活中的问题提供指数级的内存改进?我认为格和代码,基本的数学对象,将在回答我提出的问题中发挥重要作用。晶格已经成为量子计算和密码学的核心对象。格和码在后量子密码学中起着至关重要的作用,其中有三个问题特别相关:最短向量问题(SVP),错误学习问题(LWE)和伴随式解码问题。这些问题从根本上讲是关于量子计算的极限,并表明格和代码是足够硬的量子硬,但结构足够提供非平凡的原语。SVP和LWE不仅在密码学中发挥作用,而且在量子计算中也发挥作用。重要的搜索问题,如二面角隐藏子群问题涉及这两个问题。量子计算经典验证的最新突破依赖于LWE。LWE甚至使经典方能够参与安全的量子计算和通信协议。因此,对SVP和LWE理解的改进将使量子计算和密码学界受益。此外,最近的一些改进格算法,来自代码,显示了研究格和代码一起,而不是分开的好处。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variational quantum solutions to the Shortest Vector Problem
- DOI:10.22331/q-2023-03-02-933
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Martin R. Albrecht;Milos Prokop;Yixin Shen;P. Wallden
- 通讯作者:Martin R. Albrecht;Milos Prokop;Yixin Shen;P. Wallden
Quantum Augmented Dual Attack
量子增强双重攻击
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Martin R. Albrecht
- 通讯作者:Martin R. Albrecht
Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V
密码学进展 - EUROCRYPT 2023 - 第 42 届密码技术理论与应用国际会议,法国里昂,2023 年 4 月 23-27 日,会议记录,第五部分
- DOI:10.1007/978-3-031-30589-4_8
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bonnetain X
- 通讯作者:Bonnetain X
Quantum bounds for 2D-grid and Dyck language
二维网格和 Dyck 语言的量子界限
- DOI:10.1007/s11128-023-03910-9
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Ambainis A
- 通讯作者:Ambainis A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yixin Shen其他文献
Roof collapse mechanism of weak surrounding rock for deep-buried tunnels under high geostress conditions
- DOI:
10.1007/s11629-024-8650-8 - 发表时间:
2024-07-09 - 期刊:
- 影响因子:2.500
- 作者:
Qi Zhang;Xiaokang Guo;Zhiguo Yan;Zhongdai Lei;Yixin Shen - 通讯作者:
Yixin Shen
Severe traumatic valgus instability of the elbow: pathoanatomy and outcomes of primary operation
肘部严重创伤性外翻不稳定性:病理解剖学和初次手术的结果
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
Lei Zhang;Laixu Wang;Shiyang Yu;Zhanhui Lv;Peng Zhang;C. Fan;Yixin Shen - 通讯作者:
Yixin Shen
Metal monovacancy-induced spin polarization for simultaneous energy recovery and wastewater purification
- DOI:
10.1016/j.cej.2022.138537 - 发表时间:
2023 - 期刊:
- 影响因子:15.1
- 作者:
Chao Zhu;Lun Lu;Junjie Xu;Shuang Song;Qile Fang;Renlan Liu;Yixin Shen;Jingkai Zhao;Wen Dong;Yi Shen - 通讯作者:
Yi Shen
Evaluation of MiR-181a as a potential therapeutic target in osteoarthritis
MiR-181a 作为骨关节炎潜在治疗靶点的评估
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yuqiang Qian;Jian;Jun Peng;Qiang Wang;Yixin Shen - 通讯作者:
Yixin Shen
Improved (Provable) Algorithms for the Shortest Vector Problem via Bounded Distance Decoding
通过有界距离解码改进(可证明)最短向量问题的算法
- DOI:
10.4230/lipics.stacs.2021.4 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Divesh Aggarwal;Yanlin Chen;R. Kumar;Yixin Shen - 通讯作者:
Yixin Shen
Yixin Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yixin Shen', 18)}}的其他基金
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
- 批准号:
EP/W02778X/2 - 财政年份:2023
- 资助金额:
$ 74.55万 - 项目类别:
Fellowship
Bridging the Gap Between Lattice Coding and Lattice Cryptography - Post-Quantum Cryptography
弥合晶格编码和晶格密码学之间的差距 - 后量子密码学
- 批准号:
EP/S02087X/1 - 财政年份:2019
- 资助金额:
$ 74.55万 - 项目类别:
Research Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Hardware Security Module for secure delegated Quantum Cloud Computing
用于安全委托量子云计算的硬件安全模块
- 批准号:
EP/Z000564/1 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Research Grant
Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
- 批准号:
MR/X023583/1 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Fellowship
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
- 批准号:
10078083 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Collaborative R&D
Travel: NSF Student Travel Grant for 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
旅费:2024 年 IEEE 国际量子计算与工程会议 (QCE) 的 NSF 学生旅费补助金
- 批准号:
2417602 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Standard Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
- 批准号:
2328096 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Standard Grant
CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
- 批准号:
2338369 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Continuing Grant
Superconducting Gatemon Quantum Computing Enabled by CryoElectronics
CryoElectronics 支持的超导 Gatemon 量子计算
- 批准号:
EP/X025152/1 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Research Grant
Quantum computing solutions for optimisation problems in Energy Grids
能源网格优化问题的量子计算解决方案
- 批准号:
10108062 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Small Business Research Initiative
Quantum reservoir computing for efficient signal processing
用于高效信号处理的量子存储计算
- 批准号:
10108296 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
EU-Funded
Towards Distributed Computing on a Quantum Network
迈向量子网络上的分布式计算
- 批准号:
2906416 - 财政年份:2024
- 资助金额:
$ 74.55万 - 项目类别:
Studentship