Entanglement-enhanced sensing with quantum networks

量子网络的纠缠增强传感

基本信息

  • 批准号:
    EP/W028026/1
  • 负责人:
  • 金额:
    $ 82.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Entanglement, a uniquely quantum phenomenon, enables two initially independent quantum systems to be interlinked. Entanglement forms the basis of why quantum technologies have an advantage to their classical counterparts, in particular for computing and networking. At Oxford, we have developed a quantum network of trapped ions, generating entanglement between ions in two macroscopically separate systems via a photonic interconnect. While this network was originally built for applications in quantum computing or cryptography, in this project, I aim to use our quantum network for entanglement enhanced sensing, using either the optical transition of these ions or their motion.First, I aim to build a network of entangled optical atomic clocks for enhanced frequency comparisons of ions in two separate traps. Optical atomic clocks are used for the most precise measurements of time. Precision timing is essential for applications from global positioning satellites, precision agriculture, or for the timestamping of financial transactions to ensure security. Frequency comparisons between two atomic clocks are also used for geodesy, and to probe variations of fundamental constants, or the properties of dark matter. However, such frequency measurements are typically limited by the standard quantum limit. Entanglement provides a path beyond that limit, reducing the number of measurements required to achieve a given precision. An entangled network of clocks would also maximise the use of timekeeping resources and have potential security benefits as well. Our experiment is the first demonstration of such a network. Starting from our initial proof of principle demonstration, we will incorporate another ion species, showing the versatility of our system to extend the remote entanglement to transitions that are more stable and can be probed longer. In addition, we can build on our initial demonstration by adding local entangling operations in each network to further enhance the frequency measurements.Second, I want to generate remote entanglement of the motional states of the ions. By coupling the ions' internal states to their motion, we can map the initial spin-spin entanglement to their respective motions. This demonstration would be the first for two ions in separate systems, generating entanglement between quantum states that have a spatial extent of a few nm even though they are separated by metres. Previous demonstrations have been done for two ions in a single trap. We can use this remote entanglement to enhance measurements of displacements in each of the ions. As the ions are charged, sensing small displacements of the ion can be used to measure small electric fields, with applications to detecting dark matter. The protocols we develop for entangling remote mechanical oscillators and measuring their displacements would also be applicable to other optomechanical systems. Further enhancements could be obtained by using nonclassical states of the ion motion such as squeezed states. Finally, we can use the ions' motional degree of freedom to explore a different approach to quantum computing, where we encode the information in the ions' motion rather than their internal states. Here, the ion motion offers a larger Hilbert space to explore, with potential advantages for error correction. We can use the remote entanglement that is unique to our system to develop new protocols for continuous variable quantum computation, which would also be applicable to other systems such as superconducting qubits.
纠缠是一种独特的量子现象,它使两个原本独立的量子系统相互联系。纠缠构成了量子技术为什么比经典技术更有优势的基础,特别是在计算和网络方面。在牛津大学,我们已经开发出一个量子网络的捕获离子,产生纠缠离子在两个宏观上分开的系统通过光子互连。虽然这个网络最初是为了量子计算或密码学的应用而构建的,但在这个项目中,我的目标是使用我们的量子网络进行纠缠增强传感,使用这些离子的光学跃迁或它们的运动。首先,我的目标是构建一个纠缠光学原子钟网络,用于增强两个独立陷阱中离子的频率比较。光学原子钟用于最精确的时间测量。精确定时对于全球定位卫星、精准农业或金融交易的时间戳以确保安全性至关重要。两个原子钟之间的频率比较也用于大地测量,并探测基本常数的变化或暗物质的性质。然而,这种频率测量通常受到标准量子极限的限制。纠缠提供了一条超出该限制的路径,减少了达到给定精度所需的测量次数。一个纠缠的时钟网络也将最大限度地利用计时资源,并具有潜在的安全利益。我们的实验是这种网络的第一次演示。从我们最初的原理证明演示开始,我们将加入另一种离子种类,展示我们系统的多功能性,将远程纠缠扩展到更稳定,可以探测更长时间的过渡。此外,我们可以在我们最初的演示的基础上,通过在每个网络中添加本地纠缠操作来进一步增强频率测量。第二,我想产生离子运动态的远程纠缠。通过将离子的内部状态耦合到它们的运动,我们可以将初始自旋-自旋纠缠映射到它们各自的运动。这将是第一次在单独的系统中对两个离子进行演示,在空间范围为几nm的量子态之间产生纠缠,即使它们相隔几米。以前的演示已经完成了两个离子在一个单一的陷阱。我们可以利用这种远程纠缠来增强对每个离子位移的测量。当离子被充电时,感测离子的小位移可以用来测量小电场,并应用于探测暗物质。我们开发的用于缠绕远程机械振荡器并测量其位移的协议也适用于其他光机械系统。进一步的增强可以通过使用离子运动的非经典态,如压缩态。最后,我们可以利用离子的运动自由度来探索一种不同的量子计算方法,在这种方法中,我们将信息编码在离子的运动中,而不是它们的内部状态。在这里,离子运动提供了一个更大的希尔伯特空间来探索,具有误差校正的潜在优势。我们可以使用我们系统特有的远程纠缠来开发连续变量量子计算的新协议,这也适用于其他系统,如超导量子比特。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Breaking the Entangling Gate Speed Limit for Trapped-Ion Qubits Using a Phase-Stable Standing Wave.
使用相位稳定驻波打破捕获离子量子位的纠缠门速度限制。
  • DOI:
    10.1103/physrevlett.131.220601
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Saner S
  • 通讯作者:
    Saner S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghavendra Srinivas其他文献

Raghavendra Srinivas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

噬菌体靶向肠道粪肠球菌提高帕金森病左旋多巴疗效的机制研究
  • 批准号:
    82371251
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
  • 批准号:
    2328407
  • 财政年份:
    2024
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Standard Grant
ERI: AI-Enhanced Dynamic Interference Suppression in Cognitive Sensing with Reconfigurable Sparse Arrays
ERI:利用可重构稀疏阵列在认知传感中进行人工智能增强型动态干扰抑制
  • 批准号:
    2347220
  • 财政年份:
    2024
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
  • 批准号:
    2344350
  • 财政年份:
    2024
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Standard Grant
Enhanced atomic co-magnetometry for inertial sensing
用于惯性传感的增强型原子共磁测量
  • 批准号:
    EP/Y004817/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Standard Grant
Remote Intravascular Pressure Sensing using Ultrasound
使用超声波进行远程血管内压力传感
  • 批准号:
    10648240
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
  • 批准号:
    2326837
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Standard Grant
Enhanced atomic co-magnetometry for inertial sensing
用于惯性传感的增强型原子共磁测量
  • 批准号:
    EP/Y005236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Research Grant
Combination antigen sensing engineered T cell for precise recognition and enhanced elimination of solid tumors
组合抗原传感工程 T 细胞可精确识别并增强实体瘤的消除
  • 批准号:
    10651062
  • 财政年份:
    2023
  • 资助金额:
    $ 82.35万
  • 项目类别:
Enhanced quantum sensing with a nitrogen-vacancy centre as gateway to the electron spin of phosphorus
以氮空位中心作为磷电子自旋通道的增强量子传感
  • 批准号:
    22K14560
  • 财政年份:
    2022
  • 资助金额:
    $ 82.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了