Next Generation Quantum Detector Utilising Engineered Materials for Short-wave Infrared Applications

利用工程材料进行短波红外应用的下一代量子探测器

基本信息

  • 批准号:
    EP/W028166/1
  • 负责人:
  • 金额:
    $ 95.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

We have seen rapid development and growing interest in quantum technologies-based applications in the past decade and the overall global quantum technology market is expected to reach $31.57B by 2026. Most of these emerging quantum applications require single-photon avalanche diode (SPAD) detectors operating beyond the spectral range of silicon but with "silicon-like" performance. The use of "silicon-like" short-wave infrared (SWIR) SPAD detectors in the existing systems will immediately improve resolution and acquisition time for the existing imaging system and enhance the range and improve data rate for Quantum Key Distribution (QKD). However, the present commercially available InGaAs/InP based SPADs based on designs from more than two decades ago are unlikely to have a step change in their performance. Over the last five years, the advent of several innovations by way of novel III-V materials and semiconductor band structure engineering offers us the possibility of a paradigm shift in the performance of long wavelength detectors. The next revolution in the development of SPADs in the SWIR region will almost certainly be using novel materials and band structure engineered structures. Such a revolution will significantly enhance detection efficiency and fast timing. This new class of detectors will be evaluated on existing state-of-the-art testbeds for time-of-flight ranging/depth imaging and QKD. This Fellowship proposal has the ambition to sweep away the obstacles of material and processing problems that are hindering the development of affordable and easy operation SPADs, and to bridge gaps between material sciences, semiconductor physics, manufacturability and quantum technology applications in order to improve the scope and overall performance of next generation quantum technology-based applications.
在过去的十年中,我们看到了量子技术应用的快速发展和日益增长的兴趣,预计到2026年,全球量子技术市场的整体规模将达到315.7亿美元。这些新兴的量子应用中的大多数都需要单光子雪崩二极管(SPAD)探测器,其工作范围超出硅的光谱范围,但具有“硅类”性能。在现有系统中使用“类硅”短波红外(SWIR)SPAD探测器将立即提高现有成像系统的分辨率和采集时间,并增强量子密钥分发(QKD)的范围和提高数据速率。然而,基于二十多年前的设计的目前市售的基于InGaAs/InP的SPAD不太可能在其性能上具有阶跃变化。在过去的五年中,通过新型III-V材料和半导体能带结构工程的几项创新的出现为我们提供了长波长探测器性能的范式转变的可能性。SWIR区域SPAD发展的下一次革命几乎肯定是使用新材料和能带结构工程结构。这种革命将大大提高检测效率和快速计时。这类新的探测器将在现有的最先进的飞行时间测距/深度成像和QKD测试平台上进行评估。该奖学金计划旨在扫除阻碍开发负担得起且易于操作的SPAD的材料和加工问题的障碍,并弥合材料科学,半导体物理,可制造性和量子技术应用之间的差距,以提高下一代量子技术应用的范围和整体性能。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Afterpulsing in Ge-on-Si Single-Photon Avalanche Diodes
  • DOI:
    10.1109/lpt.2023.3289653
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xin Yi;Z. Greener;Fiona Fleming;J. Kirdoda;D. Dumas;Lisa Saalbach;Dave A. S. Muir;L. Ferre-Llin;R. Millar;Douglas J. Paul;G. Buller
  • 通讯作者:
    Xin Yi;Z. Greener;Fiona Fleming;J. Kirdoda;D. Dumas;Lisa Saalbach;Dave A. S. Muir;L. Ferre-Llin;R. Millar;Douglas J. Paul;G. Buller
Simulation and design optimization of germanium-on-silicon single photon avalanche diodes
  • DOI:
    10.1117/12.2650154
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles Smith;J. Kirdoda;D. Dumas;C. Coughlan;C. McCarthy;Hannah Mowbray;M. Mirza;Fiona Fleming;Xin Yi;Lisa Saalbach;G. Buller;D. Paul;R. Millar
  • 通讯作者:
    Charles Smith;J. Kirdoda;D. Dumas;C. Coughlan;C. McCarthy;Hannah Mowbray;M. Mirza;Fiona Fleming;Xin Yi;Lisa Saalbach;G. Buller;D. Paul;R. Millar
Very low excess noise Al0.75Ga0.25As0.56Sb0.44 avalanche photodiode.
极低的过量噪声 Al0.75Ga0.25As0.56Sb0.44 雪崩光电二极管。
  • DOI:
    10.1364/oe.500169
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Jin X
  • 通讯作者:
    Jin X
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Yi其他文献

Investigation of glucose fluctuations by approaches of multi-scale analysis
通过多尺度分析方法研究葡萄糖波动
  • DOI:
    10.1007/s11517-017-1692-0
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Lai Yunyun;Zhang Zhengbo;Li Peiyao;Liu Xiaoli;Liu Yixin;Xin Yi;Gu Weijun
  • 通讯作者:
    Gu Weijun
Numerical analysis on the thermal regimes of thermosyphon embankment in snowy permafrost area
雪域多年冻土区热虹吸路堤热动态数值分析
  • DOI:
    10.3724/sp.j.1226.2017.00580
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Lu;Xin Yi;WenBing Yu;WeiBo Liu
  • 通讯作者:
    WeiBo Liu
SIFGD: Setaria italica Functional Genomics Database
SIFGD:狗尾草功能基因组数据库
  • DOI:
    10.1016/j.molp.2015.02.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    27.5
  • 作者:
    Qi You;Liwei Zhang;Xin Yi;Zhenghai Zhang;Wengying Xu;Zhen Su
  • 通讯作者:
    Zhen Su
Analysis of stochastic Nicholson-type delay system with patch structure
贴片结构随机Nicholson型时滞系统分析
  • DOI:
    10.1016/j.aml.2019.05.016
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Xin Yi;Guirong Liu
  • 通讯作者:
    Guirong Liu
Sulfate removal by Mg-Al layered double hydroxide precipitates: Mechanism, settleability, techno-economic analysis and recycling as demulsifier
镁铝层状双氢氧化物沉淀去除硫酸盐:机理、沉降性、技术经济分析以及作为破乳剂的回收
  • DOI:
    10.1016/j.jclepro.2019.118503
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    Tian Xiaoce;Zhou Zhen;Wu Wei;Xin Yi;Jiang Lu-Man;Zhao Xiaodan;An Ying;Wang Zhiwei
  • 通讯作者:
    Wang Zhiwei

Xin Yi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Yi', 18)}}的其他基金

Short-wave Infrared Single Photon Detection With Linear Mode Avalanche Photodiode
使用线性模式雪崩光电二极管进行短波红外单光子检测
  • 批准号:
    EP/Y020855/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Research Grant

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
  • 批准号:
    2339723
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Continuing Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Standard Grant
Near-infrared GaN quantum cascade laser for the next-generation self-driving car
用于下一代自动驾驶汽车的近红外GaN量子级联激光器
  • 批准号:
    23K20955
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next generation diamond quantum sensors for future industries
面向未来行业的下一代金刚石量子传感器
  • 批准号:
    IM240100073
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Mid-Career Industry Fellowships
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Research Grant
Opto-Spintronic interfaces for next generation quantum networks - (SpinNet)
用于下一代量子网络的光自旋电子接口 - (SpinNet)
  • 批准号:
    EP/X017850/1
  • 财政年份:
    2023
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Research Grant
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 95.2万
  • 项目类别:
Towards deterministic atomic scale manufacturing of next-generation quantum devices
迈向下一代量子器件的确定性原子尺度制造
  • 批准号:
    EP/X021963/1
  • 财政年份:
    2023
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Fellowship
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
  • 批准号:
    2246358
  • 财政年份:
    2023
  • 资助金额:
    $ 95.2万
  • 项目类别:
    Standard Grant
Advanced Quantum Sensors for Next-Generation Sensing Applications
适用于下一代传感应用的先进量子传感器
  • 批准号:
    FT210100809
  • 财政年份:
    2023
  • 资助金额:
    $ 95.2万
  • 项目类别:
    ARC Future Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了