Engineering robust, stable, and safe synthetic genetic circuits for smart therapeutics

为智能疗法设计强大、稳定且安全的合成基因电路

基本信息

  • 批准号:
    EP/W032813/1
  • 负责人:
  • 金额:
    $ 40.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Synthetic biology is an emerging field of research where we use engineering principles for combining different biological parts to construct engineered biological systems. One of the most active areas of research in synthetic biology is engineering therapeutic bacteria that contain genetic circuits for detection and prevention of diseases. Many bacteria in nature possess the capabilities to sense minute changes in the environment and to produce biomolecules with therapeutic potential. If we can effectively combine the 'sensor' (to detect disease symptoms) and 'effector' (to produce molecules of interest) parts from different bacteria we can engineer strains that can act as 'smart' therapeutics. Such a therapeutic strain could stay in our body and autonomously detect and treat infections from pathogenic bacteria or prevent genetic or metabolic disorders such as cancer or diabetes. The potential for engineered bacteria with synthetic genetic circuits to act as the ultimate point-of-care diagnostic and therapeutic for our body is profound and exciting.The past decade of research in synthetic biology has been very successful in expanding the repertoire of genetic parts for 'sensor' and 'effector' modules of such synthetic genetic circuits. However, when combined into the circuit, the performance has been suboptimal and difficult to predict. Furthermore, the functional lifetime of such circuits has been very short, as impairing mutants appear and take over the population or the circuit itself gets lost over time. The poor performance and short functional lifetime of synthetic genetic circuits have made it difficult to realise the enormous potential of engineered bacteria in 'bacterial therapy'. We are proposing to build a directed evolution pipeline to engineer synthetic genetic circuits that are suitable for therapeutic applications. This pipeline involves a novel method for creating variation in circuit sequence, a transformative testbed for comparing the circuit function and its impact on the health of the carrying cell (the main determinant of functional lifetime) for each variant, and a new technology to isolate the selected variants with improvements in both. This system is developed based on key achievements in our research on analysing growth, physiology, and gene-expression of bacteria, including the recently developed microfluidic technology that enables us to monitor >100k individual bacterial cells in parallel over many hours, time-resolved imaging techniques to record the growth and fluorescence in each cell with a high framerate, and machine-learning algorithms that enable us to accurately analyse this high-throughput data. This pipeline will optimise circuits to improve their function and functional lifetime such that they can act in robust manner over a long period of time.Since we need the therapeutic bacteria containing such circuits to be applied to our body, we need to make sure that the circuits do not get lost and are not transferred to other bacterial cells in our body. Therefore, to engineer safe therapeutic bacteria, we will integrate the synthetic circuit to the chromosome of the bacteria, where they can't be easily lost or transferred. Currently, there is no pipeline for optimising circuits integrated to the chromosome and no platform for simultaneously quantifying function and functional lifetime of a synthetic circuit. The directed evolution pipeline developed in this work will be the first of its kind to enable in situ optimisation of synthetic circuits to simultaneously improve the function and functional lifetime. We plan to use this directed evolution pipeline to engineer and optimise a 'smart' therapeutic bacterium that carries a sensor module for detecting inflammation caused by pathogens and activates oscillatory production of an antimicrobial peptide to eliminate the infecting pathogen.
合成生物学是一个新兴的研究领域,我们使用工程原理来结合不同的生物部分来构建工程生物系统。合成生物学最活跃的研究领域之一是工程治疗细菌,其中包含用于检测和预防疾病的基因电路。自然界中的许多细菌都具有感知环境微小变化的能力,并能产生具有治疗潜力的生物分子。如果我们能够有效地将不同细菌的“传感器”(检测疾病症状)和“效应器”(产生感兴趣的分子)部分联合收割机结合起来,我们就可以设计出可以作为“智能”治疗剂的菌株。这样的治疗菌株可以留在我们的体内,自主检测和治疗病原菌的感染,或预防遗传或代谢疾病,如癌症或糖尿病。具有合成基因电路的工程细菌作为我们身体的最终即时诊断和治疗的潜力是深远和令人兴奋的。过去十年的合成生物学研究在扩大这种合成基因电路的“传感器”和“效应器”模块的基因部分的库方面非常成功。然而,当结合到电路中时,性能一直是次优的并且难以预测。此外,这种电路的功能寿命非常短,因为会出现损害突变体并接管种群,或者电路本身会随着时间的推移而丢失。合成基因电路的性能差和功能寿命短,使得工程细菌在“细菌治疗”中的巨大潜力难以实现。我们建议建立一个定向进化管道来设计适合治疗应用的合成基因电路。该管道涉及一种用于创建电路序列变化的新方法,一种用于比较每个变体的电路功能及其对承载单元健康状况(功能寿命的主要决定因素)的影响的变革性测试平台,以及一种用于隔离所选变体的新技术,两者都有改进。该系统是基于我们在分析细菌的生长,生理和基因表达方面的研究成果开发的,包括最近开发的微流体技术,使我们能够在多个小时内并行监测>100k个单个细菌细胞,时间分辨成像技术,以高帧率记录每个细胞的生长和荧光,和机器学习算法,使我们能够准确地分析这些高通量数据。这条管道将优化电路,以改善其功能和功能寿命,使它们能够在很长一段时间内以稳健的方式发挥作用。由于我们需要将含有这种电路的治疗细菌应用于我们的身体,我们需要确保电路不会丢失,也不会转移到我们体内的其他细菌细胞。因此,为了设计安全的治疗细菌,我们将把合成电路整合到细菌的染色体上,在那里它们不能轻易丢失或转移。目前,没有用于优化集成到染色体的电路的管道,也没有用于同时量化合成电路的功能和功能寿命的平台。在这项工作中开发的定向进化管道将是第一个能够原位优化合成电路以同时改善功能和功能寿命的管道。我们计划使用这种定向进化管道来设计和优化一种“智能”治疗细菌,该细菌携带一个传感器模块,用于检测病原体引起的炎症,并激活抗菌肽的振荡生产,以消除感染病原体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Somenath BAKSHI其他文献

Somenath BAKSHI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

半定松弛与非凸二次约束二次规划研究
  • 批准号:
    11271243
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
  • 批准号:
    61271414
  • 批准年份:
    2012
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
民航客运网络收益管理若干问题的研究
  • 批准号:
    60776817
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    联合基金项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Alliance Grants
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Alliance Grants
Stable and Robust Graph Embedding, and Related Problems
稳定鲁棒的图嵌入以及相关问题
  • 批准号:
    1916071
  • 财政年份:
    2019
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
  • 批准号:
    9750223
  • 财政年份:
    2018
  • 资助金额:
    $ 40.94万
  • 项目类别:
Design and Synthesis of Robust Cationic Polymers for Stable and Efficient Anion-Exchange Membranes
用于稳定高效阴离子交换膜的鲁棒阳离子聚合物的设计与合成
  • 批准号:
    1809658
  • 财政年份:
    2018
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
  • 批准号:
    10510144
  • 财政年份:
    2018
  • 资助金额:
    $ 40.94万
  • 项目类别:
Design-driven engineering of robust mammalian sense-and-respond functions
强大的哺乳动物感知和响应功能的设计驱动工程
  • 批准号:
    9926885
  • 财政年份:
    2018
  • 资助金额:
    $ 40.94万
  • 项目类别:
CRII: RI: Distributed, Stable and Robust Topology Control: New Methods for Asymmetrically Interacting Multi-Robot Teams
CRII:RI:分布式、稳定和鲁棒的拓扑控制:非对称交互多机器人团队的新方法
  • 批准号:
    1657235
  • 财政年份:
    2017
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
SBIR Phase I: A Simple, Robust, Low Cost Tool to Quantify Stable Isotopes in Organic Molecules: Enabling Easy Access to Compound Source, Pathway, and Biokinetic Studies
SBIR 第一阶段:一种简单、稳健、低成本的工具,用于量化有机分子中的稳定同位素:能够轻松进行化合物来源、途径和生物动力学研究
  • 批准号:
    0912627
  • 财政年份:
    2009
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Emergence of robust, stable structures via computation within natural networks
通过自然网络中的计算出现稳健、稳定的结构
  • 批准号:
    DP0770359
  • 财政年份:
    2007
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了