Decoupled Electrolysis for the Production of Zero-Carbon Hydrogen
解耦电解生产零碳氢
基本信息
- 批准号:EP/W033135/1
- 负责人:
- 金额:$ 27.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In order to produce green hydrogen at scale from the electrolysis of water, new electrolysers that are more compatible with intermittent renewably-generated power must be developed. This is because existing electrolysers suffer from two key drawbacks which hampers their adoption for green hydrogen production driven by renewable power sources. Firstly, existing electrolysers do not handle intermittent power inputs effectively. Renewable power sources are by definition intermittent (sometimes the sun shines, and sometimes it doesn't, and when it is shining its intensity on the ground is constantly varying). If connected directly to a solar panel for example, a conventional electrolyser would be operating in constant stop-start mode. This accelerates the degradation of expensive components in the electrolyser and also leads to the production of dangerous mixtures of the hydrogen and oxygen products of electrolysis. As such, conventional electrolysers require significant power management apparatus in order to work safely using renewable power inputs. Without such power management systems, conventional electrolysers would produce dangerous mixtures of hydrogen and oxygen when coupled directly to renewable power sources, which hitherto has been a major barrier to the realisation of a hydrogen production economy driven by renewable power. The second major drawback of conventional systems is their high operational and maintenance costs. State-of-the-art electrolysers contain expensive membranes to try and keep the hydrogen and oxygen products separate, but these degrade rapidly during operation and must be replaced regularly. This adds considerable cost and complexity to long-term electrolyser operation.In this proposal, we will build on the concept of "decoupled electrolysis" to develop a system that can use solar power directly for the electrolysis of water. A decoupled electrolysis approach has the potential to solve both of the key issues preventing greater uptake of electrolysis for green hydrogen production. Indeed, in our preliminary results, we have shown that decoupled electrolysis allows the effective and safe use of power inputs characteristic of renewable sources under conditions where a conventional electrolyser produced a hazardous mixture of hydrogen and oxygen. In contrast, the gases produced by the decoupled system were well within regulatory limits in terms of mixed gas content. We were also able to show that membrane degradation was significantly reduced in a decoupled system relative to a conventional system, suggesting that decoupled electrolysers should require less downtime and incur lower maintenance costs than conventional "coupled" electrolysers. Both of these features could be expected to make electrolysis of water to produce green hydrogen significantly more practical and cost-effective. By leveraging the ability of decoupled electrolysis to allow hydrogen and oxygen generation to take place in separate places, at separate times and at rates that are not connected to each other, we aim in this project to demonstrate the production of pure hydrogen at pressure driven by sunlight. This will open the door to future scale-up of these systems for safe and efficient production of zero-carbon hydrogen driven by renewables.
为了从水的电解中大规模生产绿色氢,必须开发与间歇性可再生发电更兼容的新电解槽。这是因为现有的电解槽存在两个主要缺点,这阻碍了它们用于由可再生能源驱动的绿色氢气生产。首先,现有的电解槽不能有效地处理间歇性电力输入。根据定义,可再生能源是间歇性的(有时阳光照射,有时不照射,当阳光照射时,其在地面上的强度不断变化)。例如,如果直接连接到太阳能电池板,传统的电解槽将以恒定的停止-启动模式运行。这加速了电解槽中昂贵部件的降解,并且还导致电解的氢和氧产物的危险混合物的产生。因此,常规电解槽需要大量电力管理设备以便使用可再生电力输入安全地工作。如果没有这样的电力管理系统,常规电解槽在直接耦合到可再生电源时将产生危险的氢和氧的混合物,这迄今为止一直是实现由可再生电力驱动的氢生产经济的主要障碍。传统系统的第二个主要缺点是其高运营和维护成本。最先进的电解槽含有昂贵的膜,试图保持氢和氧产品分离,但这些膜在运行过程中迅速降解,必须定期更换。这给电解槽的长期运行增加了相当大的成本和复杂性。在本提案中,我们将基于“解耦电解”的概念,开发一种可以直接使用太阳能进行水电解的系统。解耦电解方法具有解决阻碍更大吸收电解用于绿色氢生产的两个关键问题的潜力。事实上,在我们的初步结果中,我们已经表明,解耦电解允许在常规电解槽产生氢气和氧气的危险混合物的条件下有效和安全地使用可再生能源的功率输入特性。相比之下,由解耦系统产生的气体在混合气体含量方面完全在监管限制内。我们还能够表明,相对于常规系统,解耦系统中的膜降解显著减少,这表明解耦电解槽应该需要更少的停机时间,并且比常规“耦合”电解槽产生更低的维护成本。这两个特征可以预期使电解水以产生绿色氢显著地更实用和成本有效。通过利用解耦电解的能力,允许氢气和氧气的产生在不同的地方,在不同的时间和速度发生,彼此不相连,我们的目标是在这个项目中演示在阳光驱动的压力下生产纯氢气。这将为未来扩大这些系统的规模打开大门,以安全有效地生产由可再生能源驱动的零碳氢。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metal-phthalocyanine complexes as electrocatalysts for the multi-electron reduction of carbon dioxide
- DOI:10.1016/j.apcata.2023.119388
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Zeliha Ertekin;M. Symes
- 通讯作者:Zeliha Ertekin;M. Symes
A standard electrolyzer test cell design for evaluating catalysts and cell components for anion exchange membrane water electrolysis
- DOI:10.1016/j.electacta.2023.142030
- 发表时间:2023-02-16
- 期刊:
- 影响因子:6.6
- 作者:Faqeeh, Abdulhai H.;Symes, Mark D.
- 通讯作者:Symes, Mark D.
Optimising the electrochemical reduction of CO 2 to oxalic acid in propylene carbonate
优化碳酸亚丙酯中CO 2 电化学还原为草酸的过程
- DOI:10.1039/d3se00652b
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:Sale H
- 通讯作者:Sale H
Room temperature electro-carboxylation of Styrene and stilbene derivatives: A comparative study
- DOI:10.1016/j.jelechem.2023.117892
- 发表时间:2023-10
- 期刊:
- 影响因子:4.5
- 作者:Nada Alhathlaul;Zeliha Ertekin;Stephen Sproules;M. Symes
- 通讯作者:Nada Alhathlaul;Zeliha Ertekin;Stephen Sproules;M. Symes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Symes其他文献
Mark Symes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Symes', 18)}}的其他基金
Decarbonising Nitrogen Fixation for Sustainable Net-Zero Agriculture
脱碳固氮以实现可持续的净零农业
- 批准号:
EP/W037564/1 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant
XPS and X-ray tomography at the University of Glasgow
格拉斯哥大学的 XPS 和 X 射线断层扫描
- 批准号:
EP/W02134X/1 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant
相似海外基金
Anionic Exchange Membrane water ELectrolysis for highLY efficIenTcy sustAinable, and clean Hydrogen production (AEMELIA)
阴离子交换膜水电解实现高效、可持续、清洁的氢气生产 (AEMELIA)
- 批准号:
10109547 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
EU-Funded
Seawater Electrolysis for Hydrogen and Commodity Chemicals Production
海水电解生产氢气和大宗化学品
- 批准号:
DP240102575 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Discovery Projects
Novel Science for Innovative Hydrogen Production Based on Analogy between Boiling and Water Electrolysis
基于沸腾和水电解类比的创新制氢新科学
- 批准号:
23H00282 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Engineering crop plants to metabolize products of CO2 electrolysis to enable food production with artificial photosynthesis
职业:对农作物进行工程改造,以代谢二氧化碳电解产物,从而通过人工光合作用实现食品生产
- 批准号:
2239243 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Developing catalysts for green hydrogen production from low-grade water electrolysis
开发低品位水电解绿色制氢催化剂
- 批准号:
2897415 - 财政年份:2023
- 资助金额:
$ 27.76万 - 项目类别:
Studentship
Valorization of niobium and tantalum for the production of low carbon intensity fuels: water electrolysis and CO2 conversion into value added products
用于生产低碳强度燃料的铌和钽的增值:水电解和二氧化碳转化为增值产品
- 批准号:
576728-2022 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Alliance Grants
Development of a highly efficient production and recycling process for metallic calcium using molten salt electrolysis
利用熔盐电解开发金属钙的高效生产和回收工艺
- 批准号:
22K18880 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
New electrode materials for hydrogen production by water electrolysis
水电解制氢新型电极材料
- 批准号:
RGPIN-2022-03378 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Discovery Grants Program - Individual
Sustainable Hydrogen Production from Seawater Electrolysis
海水电解可持续制氢
- 批准号:
EP/W03784X/1 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Research Grant
Using dynamic flow electrolysis and mechanochemistry to enhance the performance of gold production.
利用动态流电解和机械化学来提高黄金生产的性能。
- 批准号:
566913-2021 - 财政年份:2022
- 资助金额:
$ 27.76万 - 项目类别:
Alliance Grants