Scalable metamaterial thermally sprayed catalyst coatings for nuclear reactor high temperature solid oxide steam electrolysis (METASIS)

用于核反应堆高温固体氧化物蒸汽电解的可扩展超材料热喷涂催化剂涂层(METASIS)

基本信息

  • 批准号:
    EP/W033178/1
  • 负责人:
  • 金额:
    $ 30.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

The UK government has set an ambitious target of reaching net-Zero by 2050. Hydrogen has been considered to the energy vector to meet the target. However, a step change in technology is needed to produce enough green hydrogen to meet the target. One of the most promising new avenues for green hydrogen production is to combine the development of a highly active electrode layers for solid oxide steam electrolysis (SOSE) with the waste steam generated from nuclear power plant. This project will develop an advance solution for zero emission hydrogen production by designing, fabricating, and testing thermally sprayed (air plasma spray) novel metasurface coatings of electrodes (tubular cell design) for solid oxide steam electrolysis (SOSE). While metasurface design for electrode is new, the tubular cell design has received increased attention in recent years, and among the different geometric design of electrode, the tubular design offers several advantages (e.g., alleviates issues associated with high temperature sealing as seals can be placed outside of high temperature zone, can have high active surface area, can be robust against thermal cycling, etc). To achieve this, we need to benchmark the new design of electrolyser for high temperature (e.g., 700-900 C) steam deployment applications. The design will include structural (finite element analysis) and computational fluid dynamics analysis of the cell and develop understanding of its operational configurations with focus on structural and thermo-mechanical loads, incidental loads, and durability, including responses to the various loads (e.g., pressure fluctuations, temperature, and mechanical stresses). The material plays an important part in electrolysis, and therefore different electrode/electrolyte materials will be considered while manufacturing screen printing/spin coating method along with appropriate sintering processes. Following which, the cell (tubular samples as test coupon electrodes) will be fabricated using a combination of electrolyte. cathode, and anode from the materials list of choice using thermal spray (air plasma spray or APS) technique with cathode as metasurface at an industrial facility. We will then make solid oxide steam electrolyser prototype using the best design and materials choices. We will assess the overall viability of a modular design (a small container) with single tubular cell assembly. The single tubular assembly (or the electrolyser) will be tested at temperature as high as 900 C and will establish correlation between metasurface design and materials for optimum efficiency, including establishing mechanism of redox/transport processes and electro-chemical reactions. And finally, we will demonstrate the effect of materials, cell design and operational parameters on efficiency. Developing electrolyser cells with enhanced hydrogen production and their scalable manufacturing can play an important role in enabling not only eco-friendly development but also cost-effective, reliable, and sustainable opportunities. This project has the potential to advance technology to produce green hydrogen and thus we will exploit the outcomes through a spin-out company or licensing to commercialise the product.
英国政府制定了到 2050 年实现净零排放的雄心勃勃的目标。氢已被视为实现该目标的能源载体。然而,需要对技术进行重大变革才能生产足够的绿色氢来实现目标。绿色制氢最有前途的新途径之一是将固体氧化物蒸汽电解(SOSE)的高活性电极层的开发与核电站产生的废蒸汽结合起来。该项目将通过设计、制造和测试用于固体氧化物蒸汽电解(SOSE)的热喷涂(空气等离子喷涂)新型电极超表面涂层(管状电池设计),开发零排放制氢的先进解决方案。虽然电极的超表面设计是新的,但管状电池设计近年来受到越来越多的关注,并且在电极的不同几何设计中,管状设计具有多种优点(例如,减轻与高温密封相关的问题,因为密封件可以放置在高温区之外,可以具有高活性表面积,可以抵抗热循环等)。为了实现这一目标,我们需要对高温(例如 700-900 C)蒸汽部署应用的电解槽的新设计进行基准测试。该设计将包括电池的结构(有限元分析)和计算流体动力学分析,并加深对其操作配置的理解,重点关注结构和热机械载荷、偶然载荷和耐久性,包括对各种载荷(例如压力波动、温度和机械应力)的响应。该材料在电解中起着重要作用,因此在制造丝网印刷/旋涂方法以及适当的烧结工艺时将考虑不同的电极/电解质材料。随后,将使用电解质组合来制造电池(作为测试附片电极的管状样品)。在工业设施中使用热喷涂(空气等离子喷涂或 APS)技术,以阴极作为超表面,从选择的材料列表中选择阴极和阳极。然后,我们将使用最佳设计和材料选择来制作固体氧化物蒸汽电解槽原型。我们将评估具有单个管状电池组件的模块化设计(小容器)的整体可行性。单个管状组件(或电解槽)将在高达 900°C 的温度下进行测试,并将建立超表面设计和材料之间的相关性,以实现最佳效率,包括建立氧化还原/传输过程和电化学反应的机制。最后,我们将展示材料、电池设计和操作参数对效率的影响。开发具有增强氢气产量及其可扩展制造能力的电解槽不仅可以在实现环保发展方面发挥重要作用,而且可以在实现成本效益、可靠和可持续机会方面发挥重要作用。该项目有潜力推进生产绿色氢的技术,因此我们将通过一家分拆公司或许可将产品商业化来利用这些成果。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nadimul Faisal其他文献

Performance enhancement of a modified solar still with inverted pyramid aluminum basin geometry: Experimental optimization, thermal, and economic assessment
  • DOI:
    10.1016/j.psep.2024.11.104
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohamed Ragab Diab;Mohamed Rozza;Mohamed Alhosary;Salman Nassar;Nadimul Faisal;Ammar H. Elsheikh;Mohamed Egiza
  • 通讯作者:
    Mohamed Egiza
Analytical model for laser cutting in porous media
  • DOI:
    10.1016/j.ijthermalsci.2024.109513
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ayman Mostafa;Mamdud Hossain;Nadimul Faisal
  • 通讯作者:
    Nadimul Faisal
Manufacturing Defects in Thermoplastic Composite Pipes and Their Effect on the in-situ Performance of Thermoplastic Composite Pipes in Oil and Gas Applications
  • DOI:
    10.1007/s10443-022-10066-9
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Obinna Okolie;Jim Latto;Nadimul Faisal;Harvey Jamieson;Arindam Mukherji;James Njuguna
  • 通讯作者:
    James Njuguna
Natural fibers for enhanced efficiency and sustainability in solar desalination: A review
用于提高太阳能海水淡化效率和可持续性的天然纤维:综述
  • DOI:
    10.1016/j.solener.2024.112963
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    6.600
  • 作者:
    Mohamed Egiza;Mohamed Ragab Diab;Nadimul Faisal;Ammar H. Elsheikh
  • 通讯作者:
    Ammar H. Elsheikh

Nadimul Faisal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于非福斯特电路的低频电磁隐身表面
  • 批准号:
    61701349
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
非均匀超材料在优化天线方向图中的应用研究
  • 批准号:
    61601366
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
超电小尺寸三维加载Metamaterial双向吸波器理论及其在紧凑型圆极化微带天线阵列中的解耦应用研究
  • 批准号:
    61471117
  • 批准年份:
    2014
  • 资助金额:
    83.0 万元
  • 项目类别:
    面上项目
基于复合周期结构的THz频段人工表面等离子体传输特性及功能器件研究
  • 批准号:
    61461016
  • 批准年份:
    2014
  • 资助金额:
    43.0 万元
  • 项目类别:
    地区科学基金项目
基于可控Metamaterial的可重构透镜天线技术研究
  • 批准号:
    61302047
  • 批准年份:
    2013
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
光频段纳米结构Metamaterial理论和新应用研究
  • 批准号:
    61372022
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
单轴Metamaterial中的异常色散与电磁波速研究
  • 批准号:
    61102003
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
集成有源及微纳集总参数元件的Metamaterial研究
  • 批准号:
    61131002
  • 批准年份:
    2011
  • 资助金额:
    290.0 万元
  • 项目类别:
    重点项目
基于metamaterial电磁响应的高电磁场增强、高稳定性和重现性表面增强拉曼散射衬底研究
  • 批准号:
    10974183
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
弹性波/声波超常材料(metamaterial)研究
  • 批准号:
    10874131
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
  • 批准号:
    23K20256
  • 财政年份:
    2024
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanical metamaterial triboelectric nanogenerator for high-efficiency power generation from microload
用于微负载高效发电的机械超材料摩擦纳米发电机
  • 批准号:
    23H01363
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
  • 批准号:
    23K13640
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Morphology optimization of metamaterial micromechanisms integrating functional devices
集成功能器件的超材料微机构形貌优化
  • 批准号:
    23KF0137
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Mechanical Metamaterial Electronics: Theory, Design and Applications
职业:机械超材料电子:理论、设计和应用
  • 批准号:
    2235494
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Standard Grant
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
  • 批准号:
    23H01883
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Innovative metamaterial magnetorheological technology for mining machines
适用于采矿机械的创新超材料磁流变技术
  • 批准号:
    LP210301054
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Linkage Projects
Ultrasmall reflection-type optical cell based on metamaterial lens and its application to atomic clock
基于超材料透镜的超小型反射式光学单元及其在原子钟中的应用
  • 批准号:
    23K17858
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
High Efficiency WPT System Using Hybrid Metasurface and Reactive Impedance Surface
使用混合超表面和电抗阻抗表面的高效 WPT 系统
  • 批准号:
    22KF0292
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Design of auxetic metamaterials using deep learning
使用深度学习设计拉胀超材料
  • 批准号:
    22KJ0407
  • 财政年份:
    2023
  • 资助金额:
    $ 30.69万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了