Integration of low-carbon hydrogen value chains for hard-to-decarbonise sectors with wider energy systems: Whole-systems modelling and optimisation

将难以脱碳行业的低碳氢价值链与更广泛的能源系统整合:全系统建模和优化

基本信息

  • 批准号:
    EP/W033275/1
  • 负责人:
  • 金额:
    $ 31.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Low-carbon hydrogen has a crucial part to play in the UK's transition to net zero by 2050, complementing renewable electricity, and providing an alternative low-carbon energy source for sectors that are difficult to decarbonise. To kickstart a thriving low-carbon hydrogen economy, the UK Government has set a target capacity of 5 GW of hydrogen by 2030. This will require a rapid and large-scale deployment of generation capacity, infrastructures to support the delivery of the hydrogen to its end uses, and growing its demands. Switching energy-intensive industries to low-carbon hydrogen could help accelerate its uptake and provide a reliable demand to entice producers into the market. This is also the largest opportunity for reducing CO2 emissions: per tonne of hydrogen used, heavy industry can abate about 4 times as much CO2 as other sectors. Once the market has been established, this could trickle down to other sectors, such as heating in buildings and transport, particularly long distance and heavy duty, where battery vehicles are not well suited, helping to progress the UK towards net zero.Switching energy-intensive industries to hydrogen is an effective way of integrating hydrogen into the whole energy system. This project will investigate how this can be done: what the system requirements are as well as the benefits and impacts of doing so. First, we will understand how energy-intensive industries will perform technically, economically and environmentally if they switch to hydrogen, using steelmaking as an exemplar with a process known as Direct Reduction of Iron combined with Electric Arc Furnace, by building high-fidelity mathematical models of these processes. These will be compared with other decarbonisation options for steelmaking, such as efficiency improvements, retrofitting with carbon capture, storage and utilisation technologies, and using alternative reductants and fuels such as biomass.We will then explore the implications of integrating these processes and the value chains for supplying low-carbon hydrogen into the wider energy system. This requires a whole-system modelling approach that uses optimisation for the planning, design and operation of the overall system. The model includes a representation of the possible technologies, infrastructures and resources, and determines the optimal combination of these (what technologies and infrastructures to deploy, where and when, and how to operate them over time) in order to satisfy the demands for energy services and products, while satisfying constraints (e.g. environmental), to minimise an overall performance criterion (e.g. total costs or GHG emissions). We will use the whole-system model to answer the following questions.1. Can sufficient low-carbon hydrogen be produced in the UK for the steel industry? What is the optimal mix of green and blue hydrogen to minimise costs and environmental impacts? How much renewable energy will be needed?2. How to ramp up demands in low-carbon hydrogen and what are the roles that technologies could play in achieving the levels of production needed to meet the targets? How will the hydrogen value chains develop and expand?3. Once the energy-intensive industries, such as steel, have been decarbonised using hydrogen, which sectors should be decarbonised next?4. What are the impacts on the electricity network and the wider energy system? How much energy storage capacity will be needed and in what form?5. What are the costs and benefits of developing highly integrated industrial clusters from the start, and expanding the network by building more clusters and linking them, as opposed to developing less-integrated networks nationally and then gradually increasing their integration?6. What market frameworks and policies can be put in place to ensure that steel, and other products and energy services, produced from low-carbon hydrogen will be economically competitive, locally and internationally?
低碳氢在英国到2050年向净零排放过渡的过程中发挥着至关重要的作用,它是可再生电力的补充,并为难以脱碳的行业提供一种替代的低碳能源。为了启动蓬勃发展的低碳氢经济,英国政府设定了到2030年氢的目标容量为5吉瓦。这将需要快速大规模地部署发电能力,支持将氢气输送到最终用途的基础设施,以及不断增长的需求。将能源密集型工业转向低碳氢可以帮助加速其吸收,并为吸引生产商进入市场提供可靠的需求。这也是减少二氧化碳排放的最大机会:每使用一吨氢气,重工业可以减少的二氧化碳是其他部门的四倍左右。一旦市场建立起来,这可能会渗透到其他领域,比如建筑供暖和交通运输,特别是长途和重型运输,这些领域的电池汽车不太适合,这有助于英国向净零排放迈进。能源密集型产业向氢转型是将氢融入整个能源体系的有效途径。这个项目将研究如何做到这一点:系统需求是什么,以及这样做的好处和影响。首先,我们将通过建立高保真的数学模型,了解能源密集型行业如果转向氢,将如何在技术上、经济上和环境上表现出来,以炼钢为例,采用电弧炉直接还原铁的工艺。这些将与其他炼钢脱碳方案进行比较,例如提高效率,采用碳捕获、储存和利用技术进行改造,以及使用替代还原剂和生物质等燃料。然后,我们将探讨将这些过程和价值链整合到更广泛的能源系统中以提供低碳氢的影响。这需要一种对整个系统的规划、设计和操作进行优化的全系统建模方法。该模型包括可能的技术、基础设施和资源的表示,并确定这些的最佳组合(部署什么技术和基础设施,何时何地,以及如何随着时间的推移运行它们),以满足对能源服务和产品的需求,同时满足约束(例如环境),以最小化总体性能标准(例如总成本或温室气体排放)。我们将使用全系统模型来回答以下问题。英国能否为钢铁行业生产足够的低碳氢?为了最大限度地降低成本和环境影响,绿色氢和蓝色氢的最佳组合是什么?需要多少可再生能源?如何增加对低碳氢的需求,技术在实现实现目标所需的生产水平方面可以发挥什么作用?氢价值链将如何发展和扩大?3 .一旦钢铁等能源密集型行业已经用氢实现了脱碳,下一步应该对哪些行业进行脱碳?对电网和更广泛的能源系统有什么影响?需要多少能量存储容量,以何种形式存储?从一开始就发展高度整合的产业集群,并通过建立更多的集群和连接来扩大网络,而不是在全国范围内发展整合程度较低的网络,然后逐步提高它们的整合程度,这样做的成本和收益是什么?可以制定哪些市场框架和政策,以确保由低碳氢生产的钢铁和其他产品和能源服务在本地和国际上具有经济竞争力?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sheila Samsatli其他文献

Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle
固体氧化物燃料电池-燃气轮机与超临界二氧化碳布雷顿循环联合系统用能经济性能参数分析与优化
  • DOI:
    10.1016/j.enconman.2019.02.036
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    Yunru Chen;Meng Wang;Vincenzo Liso;Sheila Samsatli;Nouri J Samsatli;Rui Jing;Jincan Chen;Ning Li;Yingru Zhao
  • 通讯作者:
    Yingru Zhao
Integrating fuzzy analytic hierarchy process into a multi-objective optimisation model for planning sustainable oil palm value chains
  • DOI:
    10.1016/j.fbp.2019.10.002
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Frederick D. Tapia;Sheila Samsatli
  • 通讯作者:
    Sheila Samsatli
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson
  • 通讯作者:
    Claire Thompson

Sheila Samsatli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低碳节能型燃料在船舶上的应用集成技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
零碳(低碳)服务区收费站智能电网管理系统构建与优化研究
  • 批准号:
    JCZRLH202500611
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
人工智能驱动低碳冶金钢包炉衬设计、材料制备、性能与服役评价一体化研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
融合知识发现的低碳冷轧生产计划与调度集成优化方法研究
  • 批准号:
    72362026
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
集装箱码头前沿区域的集成调度及碳税对港区碳排放的影响研究
  • 批准号:
    71771180
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于多源异构数据的城镇居民低碳消费行为机理、价值发现及管理决策研究
  • 批准号:
    91746208
  • 批准年份:
    2017
  • 资助金额:
    240.0 万元
  • 项目类别:
    重大研究计划
基于低碳政策体系与资源环境协同效应视角的中国碳定价机制研究
  • 批准号:
    71673263
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
面向产品环境足迹的虚拟样机多领域集成建模理论与方法研究
  • 批准号:
    51675319
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
能源经济环境集成系统中的多重内生技术演化建模与政策优化设计
  • 批准号:
    71503242
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
  • 批准号:
    10112272
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    SME Support
Open University (The) and Low Carbon Europe Limited KTP 23_24 R2.
开放大学 (The) 和低碳欧洲有限公司 KTP 23_24 R2。
  • 批准号:
    10077030
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Knowledge Transfer Partnership
CAREER: Multi-isotopologue absorption spectroscopy for hydrogen-carrier and nitrogen-based low-carbon energy
职业:氢载体和氮基低碳能源的多同位素吸收光谱
  • 批准号:
    2339502
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Continuing Grant
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Collaborative R&D
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
  • 批准号:
    2340095
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Continuing Grant
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
  • 批准号:
    EP/Y020839/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Research Grant
Recycling Waste Wind Turbine Blades for Low-Carbon Concrete (WINDCRETE)
回收废弃风力涡轮机叶片制成低碳混凝土 (WINDCRETE)
  • 批准号:
    MR/X034054/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Fellowship
Building a digital platform to support high-quality low-carbon installers
打造数字化平台,支持优质低碳安装商
  • 批准号:
    10114029
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    SME Support
Li-Ion Battery Storage Circularity For Africa By Africa for Low-Carbon E-Mobility E-Agriculture and Minigrids
非洲的锂离子电池循环存储 非洲用于低碳电动交通、电子农业和迷你电网
  • 批准号:
    10073042
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Collaborative R&D
A unifying model for ion exchange membranes – towards a low carbon future
离子交换膜的统一模型 — 迈向低碳未来
  • 批准号:
    DP240101405
  • 财政年份:
    2024
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了