Fast Switching zincblende-GaN LEDs
快速开关闪锌矿-GaN LED
基本信息
- 批准号:EP/W035871/1
- 负责人:
- 金额:$ 61.62万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
These days, everyone expects to be able to access mobile data wherever they go. This means that an enormous amount of information must be transmitted wirelessly, typically using radio waves. To keep everyone's information moving quickly, separately and privately, requires many distinct channels at different radio frequencies, and increasingly there just aren't enough different frequencies to fulfil all our data needs. One solution to this problem is to transmit data on other types of electromagnetic waves, not just radio waves. Light waves are a very good option, because different colours (or wavelengths) of light can make up lots of extra channels so that a large amount of extra data can be transmitted. In such an optical wireless communication systems, data is transmitted via changes to the intensity of the light. For fast data transfer, it's thus important to be able to turn the light source used for data transmission on and off very quickly, ideally more than a billion times per second. Most standard light sources are much slower than this, but tiny light emitting diodes (LEDs), known as microLEDs, only a few tens of micrometres across, offer both the required fast switching and excellent energy efficiencies. LEDs are already widely used in lighting. Unfortunately, for these devices, which are based on gallium nitride (GaN), the very nature of how the atoms are arranged in the material (the crystal structure) makes it difficult to achieve fast switching across the whole visible wavelength range. This limits the number of communication channels that could be opened up, because there aren't any fast-switching devices available at some wavelengths. However, the applicants in this proposal have developed a way to grow GaN in an alternative crystal structure, known as the cubic (or zincblende) structure, which can overcome the inherent limitations of the usual hexagonal (or wurtzite) structure. LEDs based on zincblende GaN are in their infancy, but evidence is building that they can be used to make fast switching microLEDs right across the visible spectrum.To make this vision a reality, many aspects of the material need to be optimised. We need to understand how defects (or mistakes) in the crystal affect not only the switching speed, but also the efficiency of the microLED and the colour purity of the emitted light. (Colour purity is important because if the LED emits a whole range of colours, it becomes difficult to use it to create many separate information channels, each at a distinct colour). If defects in the crystal cause problems with any of these aspects, we need to change the way we make the materials, to either reduce the defect density or to make the LED more robust to the presence of defects.We also need to optimise the way the microLED is designed. LED materials are deposited as many layers of different chemical makeup, and each layer needs to have the right thickness and composition, and to be laid down under exactly the right conditions of temperature and pressure, to ensure it has optimum properties. We will use state-of the art microscopes to explore these vital links between how the material is made, its structure and its properties, and use insights from these studies to guide further improvements to the design and fabrication of the material. We will also develop new processes to transform the layers of deposited material into tiny microLEDs, appropriately connected to the outside world to allow testing of their high-speed switching performance.Overall, this project will allow us to take an emerging material - zincblende GaN - and develop it into a real technology for optical wireless communications. We will design, develop and test microLEDs for high frequency applications and work with industrial partners to accelerate the technology towards real world applications.
如今,每个人都希望无论走到哪里都能访问移动数据。这意味着大量的信息必须以无线方式传输,通常使用无线电波。为了让每个人的信息快速、独立和私密地传播,需要在不同的无线电频率上有许多不同的频道,而越来越多的不同频率无法满足我们所有的数据需求。这个问题的一个解决方案是通过其他类型的电磁波传输数据,而不仅仅是无线电波。光波是一个非常好的选择,因为不同颜色(或波长)的光可以组成许多额外的通道,从而可以传输大量额外的数据。在这样的光学无线通信系统中,数据通过改变光的强度来传输。为了实现快速数据传输,能够非常快速地打开和关闭用于数据传输的光源非常重要,理想情况下每秒超过10亿次。大多数标准光源的速度比这个慢得多,但是微小的发光二极管(led),被称为微型led,直径只有几十微米,提供了所需的快速开关和卓越的能源效率。led已经广泛应用于照明领域。不幸的是,对于这些基于氮化镓(GaN)的器件,原子在材料中的排列方式(晶体结构)的本质使得很难在整个可见波长范围内实现快速切换。这限制了可以打开的通信信道的数量,因为在某些波长没有任何快速切换设备可用。然而,本提案的申请人已经开发出一种以替代晶体结构生长GaN的方法,称为立方(或锌闪锌矿)结构,它可以克服通常六方(或纤锌矿)结构的固有局限性。基于锌闪锌矿氮化镓的led还处于起步阶段,但越来越多的证据表明,它们可以用来制造跨可见光谱的快速开关微型led。为了使这一愿景成为现实,材料的许多方面都需要优化。我们需要了解晶体中的缺陷(或错误)不仅会影响开关速度,还会影响微型led的效率和发射光的颜色纯度。(颜色纯度很重要,因为如果LED发出整个颜色范围,就很难用它来创建许多单独的信息通道,每个通道都有不同的颜色)。如果晶体中的缺陷导致这些方面的任何问题,我们需要改变我们制造材料的方式,要么减少缺陷密度,要么使LED对缺陷的存在更坚固。我们还需要优化微型led的设计方式。LED材料被沉积成不同化学组成的多层,每层都需要有合适的厚度和成分,并在合适的温度和压力条件下沉积,以确保其具有最佳性能。我们将使用最先进的显微镜来探索材料的制造方式、结构和性能之间的重要联系,并利用这些研究的见解来指导进一步改进材料的设计和制造。我们还将开发新的工艺,将沉积材料层转化为微小的微型led,适当地与外界连接,以测试其高速开关性能。总的来说,这个项目将使我们能够采用一种新兴材料——锌铀矿氮化镓——并将其发展成为一种真正的光学无线通信技术。我们将设计,开发和测试用于高频应用的微型led,并与工业合作伙伴合作,加速技术向现实世界的应用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polarity determination of crystal defects in zincblende GaN by aberration-corrected electron microscopy
通过像差校正电子显微镜测定闪锌矿 GaN 晶体缺陷的极性
- DOI:10.1063/5.0138478
- 发表时间:2023
- 期刊:
- 影响因子:3.2
- 作者:Xiu H
- 通讯作者:Xiu H
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Wallis其他文献
Direct observations of transient weakening during phase transformations in quartz and olivine
对石英和橄榄石相变过程中瞬态弱化的直接观测
- DOI:
10.1038/s41561-025-01703-6 - 发表时间:
2025-05-23 - 期刊:
- 影响因子:16.100
- 作者:
Andrew J. Cross;Rellie M. Goddard;Kathryn M. Kumamoto;David L. Goldsby;Lars N. Hansen;Haiyan Chen;Diede Hein;Christopher A. Thom;M. Adaire Nehring;Thomas Breithaupt;David Wallis - 通讯作者:
David Wallis
Correction to: An [18F]FDG‑PET/CT deep learning method for fully automated detection of pathological mediastinal lymph nodes in lung cancer patients
- DOI:
10.1007/s00259-022-05855-0 - 发表时间:
2022-05-31 - 期刊:
- 影响因子:7.600
- 作者:
David Wallis;Michaël Soussan;Maxime Lacroix;Pia Akl;Clément Duboucher;Irène Buvat - 通讯作者:
Irène Buvat
On-fault earthquake energy density partitioning from shocked garnet in an exhumed seismic midcrustal fault
挖掘出的地震中地壳断层中冲击石榴石的断层地震能量密度划分
- DOI:
10.1126/sciadv.adi8533 - 发表时间:
2024 - 期刊:
- 影响因子:13.6
- 作者:
Giovanni Toffol;G. Pennacchioni;Luca Menegon;David Wallis;M. Faccenda;Alfredo Camacho;M. Bestmann - 通讯作者:
M. Bestmann
Flow laws for ice constrained by 70 years of laboratory experiments
受 70 年实验室实验约束的冰的流动定律
- DOI:
10.1038/s41561-025-01661-z - 发表时间:
2025-03-28 - 期刊:
- 影响因子:16.100
- 作者:
Sheng Fan;Ting Wang;David J. Prior;Thomas Breithaupt;Travis F. Hager;David Wallis - 通讯作者:
David Wallis
David Wallis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Wallis', 18)}}的其他基金
Microphysics of evolving rock viscosity in the seismic and glacial cycles
地震和冰川循环中岩石粘度演化的微观物理
- 批准号:
MR/V021788/1 - 财政年份:2021
- 资助金额:
$ 61.62万 - 项目类别:
Fellowship
Fundamental studies of zincblende nitride structures for optoelectronic applications
用于光电应用的闪锌矿氮化物结构的基础研究
- 批准号:
EP/R01146X/1 - 财政年份:2018
- 资助金额:
$ 61.62万 - 项目类别:
Research Grant
EPSRC Manufacturing Fellowship in Gallium Nitride
EPSRC 氮化镓制造奖学金
- 批准号:
EP/N01202X/2 - 财政年份:2017
- 资助金额:
$ 61.62万 - 项目类别:
Fellowship
Vertical cubic GaN LEDs on 150mm 3C-SiC substrates
150mm 3C-SiC 基板上的垂直立方 GaN LED
- 批准号:
EP/P03036X/1 - 财政年份:2017
- 资助金额:
$ 61.62万 - 项目类别:
Research Grant
EPSRC Manufacturing Fellowship in Gallium Nitride
EPSRC 氮化镓制造奖学金
- 批准号:
EP/N01202X/1 - 财政年份:2016
- 资助金额:
$ 61.62万 - 项目类别:
Fellowship
相似国自然基金
Regime switching模型下衍生产品的套期保值
- 批准号:11126124
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Solar energy materials in action: real-time molecular movies of pyroelectric switching by time-resolved X-ray diffraction
太阳能材料的实际应用:通过时间分辨 X 射线衍射拍摄热释电开关的实时分子电影
- 批准号:
2901373 - 财政年份:2024
- 资助金额:
$ 61.62万 - 项目类别:
Studentship
EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
- 批准号:
2306824 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Standard Grant
Elucidation of switching mechanism in the Wnt pathway of human amniotic epithelial cells
阐明人羊膜上皮细胞Wnt通路的转换机制
- 批准号:
23K15421 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular basis of metabolic switching enabling food segregation among plant-associated bacteria
代谢转换的分子基础使植物相关细菌之间的食物分离
- 批准号:
23K14268 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Switching Individuals in Treatment for Opioid Use Disorder Who Smoke Cigarettes to the SREC
将接受阿片类药物使用障碍治疗且吸烟的个体转至 SREC
- 批准号:
10661301 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
EAGER/Collaborative Research: Switching Structures at the Intersection of Mechanics and Networks
EAGER/协作研究:力学和网络交叉点的切换结构
- 批准号:
2306823 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Standard Grant
LEAPS-MPS: Investigation of Electrochromic Polymer Induced Plasmon Switching on Gold Nanocrystals and its Application for Smart Windows
LEAPS-MPS:金纳米晶体电致变色聚合物诱导等离子激元开关的研究及其在智能窗户中的应用
- 批准号:
2316845 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Standard Grant
EAGER: Identifying and Producing Code-Switching in Languages from Spoken, Lexical and Socio-linguistic Features
EAGER:根据口语、词汇和社会语言特征识别和产生语言中的语码转换
- 批准号:
2327564 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Standard Grant
Enhancement of optical interaction and all-optical switching by degenerate critical coupling in single-layered graphene
单层石墨烯简并临界耦合增强光相互作用和全光开关
- 批准号:
23H00274 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applying load-independent Class E zero-voltage-switching parallel resonant inverter to capacitive power transfer
将负载独立的 E 类零电压开关并联谐振逆变器应用于电容式电力传输
- 批准号:
23K03801 - 财政年份:2023
- 资助金额:
$ 61.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)