Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
基本信息
- 批准号:EP/W036320/1
- 负责人:
- 金额:$ 58.87万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project studies modular representation theory of finite groups G from the point of view of homotopy invariant commutative algebra. More specifically it is known that the enhanced group cohomology ring B=C*(BG) with coefficients in a field k of characteristic p is always Gorenstein (by the theorem of the PI, Dwyer and Iyengar), and following the criterion of Auslander-Buchsbaum-Serre and homotopy theory of finite groups, B is regular if and only if G is p-nilpotent. The proposal is to understand the spectrum of groups along the range between these two extremes. The method is to consider the singularity category Dsg(B) (as defined by the PI and Stevenson). In broad terms the method is to show that Dsg(B) is equivalent to the bounded derived category of TA where A is the Koszul dual of B and TA is a Tate-like localization of it. The case of a cyclic Sylow p-subgroup was completely analysed by the PI and Benson. In such a simple case, one can use explicit calculation, but this will be impossible except for a very few special cases. The project is to develop structural tools for ring spectra that let us provide a formal framework for duality (Koszul, Anderson and Tate) and localization for treating B=C*(BG) for general finite groups G and other ring spectra. In favourable cases we will be able to prove finiteness theorems, showing that Dsg (B) has duality and a theory of support, and to give methods of calculation. It is hoped that complete explicit calculations will also be possible in some other cases, and that the good behaviour of the singularity category will be related to structural features of the group.
本课题从同伦不变交换代数的角度研究有限群G的模表示理论。更具体地说,特征为p的域k中系数的增强群上同调环B=C*(BG)总是Gorenstein的(根据PI,Dwyer和Iyengar定理),并且遵循Auslander-Buchsbaum-Serre判据和有限群的同伦理论,B是正则的当且仅当G是p-幂零的。我们的建议是了解这两个极端之间的范围内的群体光谱。方法是考虑奇点范畴DSG(B)(由PI和Stevenson定义)。广义DSG(B)等价于TA的有界导范畴,其中A是B的Koszul对偶,TA是B的Tate-Like局部化。利用PI和Benson完全分析了循环Sylow p-子群的情形。在这种简单的情况下,可以使用显式计算,但除了极少数特殊情况外,这是不可能的。该项目是开发环谱的结构工具,使我们能够提供一个形式框架的对偶(Koszul,Anderson和Tate)和局部化处理B=C*(BG)的一般有限群G和其他环谱。在有利的情况下,我们将能够证明有限定理,表明DSG(B)具有对偶性和支撑性理论,并给出计算方法。希望完整的显式计算在其他一些情况下也是可能的,奇点类别的良好行为将与该群体的结构特征有关。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gorenstein duality and universal coefficient theorems
Gorenstein 对偶性和通用系数定理
- DOI:10.1016/j.jpaa.2022.107265
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Davis D
- 通讯作者:Davis D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Greenlees其他文献
The Breden-Löffler Conjecture
布雷登-勒夫勒猜想
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0.5
- 作者:
Robert F. Bruner;John Greenlees - 通讯作者:
John Greenlees
Complete intersections and rational homotopy theory
完全交集和有理同伦理论
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
John Greenlees;Kathryn Hess;S. Shamir - 通讯作者:
S. Shamir
John Greenlees的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Greenlees', 18)}}的其他基金
Adelic models, rigidity and equivariant cohomology
Adelic 模型、刚性和等变上同调
- 批准号:
EP/P031080/2 - 财政年份:2018
- 资助金额:
$ 58.87万 - 项目类别:
Research Grant
Adelic models, rigidity and equivariant cohomology
Adelic 模型、刚性和等变上同调
- 批准号:
EP/P031080/1 - 财政年份:2017
- 资助金额:
$ 58.87万 - 项目类别:
Research Grant
Rational equivariant cohomology theories
有理等变上同调理论
- 批准号:
EP/H040692/1 - 财政年份:2010
- 资助金额:
$ 58.87万 - 项目类别:
Research Grant
Orientability and complete intersections for rings and ring spectra
环和环谱的定向性和完全交集
- 批准号:
EP/E012957/1 - 财政年份:2007
- 资助金额:
$ 58.87万 - 项目类别:
Research Grant
相似国自然基金
超弦/M-理论、粒子物理相关问题的研究
- 批准号:11105138
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
- 批准号:
23K03267 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
- 批准号:
23K12962 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
- 批准号:
23K03076 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
IIA-Heterotic duality
IIA-杂种优势二元性
- 批准号:
22KJ0581 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
- 批准号:
EP/W022834/1 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Fellowship
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
- 批准号:
DP230101629 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别:
Discovery Projects
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
- 批准号:
10593761 - 财政年份:2023
- 资助金额:
$ 58.87万 - 项目类别: