CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
基本信息
- 批准号:2239362
- 负责人:
- 金额:$ 41.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This CAREER award supports research in algebraic topology: an area of mathematics which studies geometric objects through the lens of algebra. Namely, it classifies geometric shapes by assigning to them various algebraic invariants, such as numbers. These tools are very powerful for studying geometric objects in spaces of larger dimensions that we can not easily picture, for example, the high dimensional analogues of spheres. The PI's work involves using and developing tools from algebraic topology for describing phenomena that arise when we consider continuous maps between large dimensional spheres. The educational component of the project is centered around creating a series of annual conferences with the goal of building a topology community in the South Central region and providing mentoring and networking opportunities for junior mathematicians from this region. The PI will also develop and run an enrichment program in mathematics for high school students and lead a research team in a Women in Topology workshop.Chromatic homotopy theory is a conceptual and computational framework for understanding the stable homotopy category through the Lubin–Tate theory of deformations of formal group laws. It is a key tool for stable homotopy theory, both for calculations and for organizing the search for large scale phenomena. The PI will investigate several projects related to duality and invertibility in chromatic homotopy theory. More specifically, the PI will study Spanier-Whitehead and Gross-Hopkins duality in this setting, particularly as applied to the spectrum of topological modular forms and other important spectra in the K(2)-local category. The second part of the project focuses on invertibility phenomena which are closely intertwined with duality. The PI will investigate the Picard groups of K(n)-local categories of particular interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个职业生涯奖支持代数拓扑学方面的研究:一个通过代数的透镜研究几何对象的数学领域。也就是说,它通过分配给它们各种代数不变量(如数字)来对几何形状进行分类。这些工具对于研究我们无法轻易描绘的更大维度空间中的几何对象非常强大,例如,球体的高维类似物。 PI的工作涉及使用和开发代数拓扑工具来描述当我们考虑大维度球体之间的连续映射时出现的现象。该项目的教育部分围绕创建一系列年度会议,目标是在中南部地区建立一个拓扑社区,并为该地区的初级数学家提供指导和交流机会。PI还将为高中生开发和运行数学丰富计划,并领导一个研究团队参加Women in Topology研讨会。色同伦理论是一个概念和计算框架,用于通过正式群律变形的Lubin-Tate理论来理解稳定同伦范畴。它是稳定同伦理论的关键工具,无论是计算还是组织对大尺度现象的搜索。PI将研究与色同伦理论中的对偶性和可逆性相关的几个项目。更具体地说,PI将研究Spanier-Whitehead和Gross-Hopkins对偶,特别是应用于拓扑模形式的谱和K(2)-局部范畴中的其他重要谱。该项目的第二部分侧重于与二元性密切相关的可逆性现象。PI将调查K(n)的Picard组-特别感兴趣的地方类别。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Bobkova其他文献
[Role of the mechanisms of replicative cellular senescence in structural and functional changes of the vascular wall in chronic kidney disease].
复制性细胞衰老机制在慢性肾脏病血管壁结构和功能变化中的作用。
- DOI:
10.17116/terarkh2017896102-109 - 发表时间:
2017 - 期刊:
- 影响因子:0.3
- 作者:
T. Rudenko;Irina Bobkova;E. Kamyshova;I. Gorelova - 通讯作者:
I. Gorelova
The duality resolution at $$n=p=2$$
- DOI:
10.1007/s00209-025-03754-2 - 发表时间:
2025-05-08 - 期刊:
- 影响因子:1.000
- 作者:
Agnès Beaudry;Irina Bobkova;Hans-Werner Henn - 通讯作者:
Hans-Werner Henn
Heat shock proteins and kidney disease: perspectives of HSP therapy
- DOI:
10.1007/s12192-017-0790-0 - 发表时间:
2017-04-13 - 期刊:
- 影响因子:3.200
- 作者:
Natalia Chebotareva;Irina Bobkova;Evgeniy Shilov - 通讯作者:
Evgeniy Shilov
Bounding the $K(p-1)$-local exotic Picard group at $p>3$
将 $K(p-1)$-本地异域 Picard 组限制在 $p>3$
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Irina Bobkova;Andrea Lachmann;Ang Li;Alicia Lima;Vesna Stojanoska;Adela YiYu Zhang - 通讯作者:
Adela YiYu Zhang
Irina Bobkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina Bobkova', 18)}}的其他基金
Conference on Chromatic Homotopy Theory and Related Areas
色同伦理论及相关领域会议
- 批准号:
2220741 - 财政年份:2022
- 资助金额:
$ 41.27万 - 项目类别:
Standard Grant
Picard Groups and Duality in Chromatic Homotopy Theory at the Prime 2.
素数色同伦理论中的皮卡德群和对偶性 2。
- 批准号:
2005627 - 财政年份:2020
- 资助金额:
$ 41.27万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307195 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
- 批准号:
24K20849 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307197 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Continuing Grant
Fractional decomposition of graphs and the Nash-Williams conjecture
图的分数式分解和纳什-威廉姆斯猜想
- 批准号:
DP240101048 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Discovery Projects
Gender Gap in Sub-Sahara African Agriculture: A Decomposition Approach for Prioritizing Interventions
撒哈拉以南非洲农业中的性别差距:优先干预措施的分解方法
- 批准号:
24K17971 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307196 - 财政年份:2024
- 资助金额:
$ 41.27万 - 项目类别:
Continuing Grant
Reactive Force Field Design Guided by Energy Decomposition Analysis
能量分解分析引导的反作用力场设计
- 批准号:
2313791 - 财政年份:2023
- 资助金额:
$ 41.27万 - 项目类别:
Continuing Grant
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
- 批准号:
2243119 - 财政年份:2023
- 资助金额:
$ 41.27万 - 项目类别:
Standard Grant
Development of an electrically heated wire catalyst for highly efficient decomposition of ethylene with the aim of keeping the freshness of agricultural products
开发高效分解乙烯的电加热丝催化剂,以保持农产品的新鲜度
- 批准号:
23K05465 - 财政年份:2023
- 资助金额:
$ 41.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Photo-thermal ammonia decomposition
光热氨分解
- 批准号:
DE230100789 - 财政年份:2023
- 资助金额:
$ 41.27万 - 项目类别:
Discovery Early Career Researcher Award