Transparent Transmitters and Programmable Metasurfaces for Transport and Beyond-5G (TRANSMETA)

用于传输和超 5G 的透明发射器和可编程超表面 (TRANSMETA)

基本信息

  • 批准号:
    EP/W037734/1
  • 负责人:
  • 金额:
    $ 81.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

As communications move towards higher frequencies for higher data rates, concrete structures and buildings will significantly reduce the electromagnetic signal strength compared to windows. The overarching vision of TRANSMETA is to create transparent intelligent reflecting metasurfaces that could be placed on the windows of buildings or vehicles, and which would intelligently reflect the incoming electromagnetic wave from a base station directly to the user (either inside or outside) to improve signal reception quality. Metasurfaces can also filter certain frequencies, change the polarisation, or reduce the reflections from radar.The challenges to achieving this are: 1. For transparent conductors there is a trade-off between optical transparency and electrical conductivity in terms of layer thickness and frequency response which needs to be quantified. There are also practical challenges in how to connect these materials electrically and physically to the conventional opaque electronics.TRANSMETA will address this by investigating two approaches for the conductors: i) metallic meshes on the sub-micron scale where the lines are too small for the human eye to see; ii), if the results are not as required, a complementary technique using indium tin oxide will also be investigated. To test their performance, transparent antennas and static metasurfaces, such as frequency selective surfaces, will be fabricated and measured.2. Novel metasurfaces must be designed based on the material properties. TRANSMETA will address this by carrying out extensive studies using commercial electromagnetic software with input from the earlier measurements. The effect of the ground plane at the rear of the metasurface will be investigated and we will aim to maximise the optical transparency. As an alternative to the reflecting metasurfaces, transmitting surfaces will also be designed where no rear ground plane is required.3. The practical challenges of fabricating these metasurfaces must be investigated.TRANSMETA will initially make static (non-intelligent) metasurfaces which can reflect the signal between two fixed positions, tested by blocking the direct signal in the anechoic chambers at Loughborough University. This will be applicable if there were known communication dead zones in buildings which will become increasingly common as we move towards higher frequencies. Of course, optical transparency is not always essential for these novel metasurfaces, but it increases the scope of applications.4. To make the metasurface intelligent, reconfigurability must be integrated into the system.TRANSMETA will address this with two techniques: i) vanadium dioxide where the properties change from being an insulator to a conductor when a direct current is applied, ii) PIN diodes. There are challenges in integrating these techniques into the system while also maximising the transparency. The direct current bias lines can be made transparent, but their optimum position and orientation are critical to the overall performance.5. A further challenge in achieving the intelligence is being able to sense where the transmitter and user are located in order to reflect the signal in the correct direction.TRANSMETA will develop a sensing system that uses the pilot signals from the base station and user and then applies signal processing to retrieve the directions. A field-programmable gate array (FPGA) will control the metasurface behaviour accordingly.Finally, all these elements will be integrated together to create metasurface demonstrators which will be tested in real-world environments with support from our 12 industrial Project Partners.The impact of successfully completing this project will be improved capability for beyond-5G communication systems. Utilising transparent conductors will enable these intelligent metasurfaces to be employed in vehicles and building windows.
随着通信向更高频率移动以获得更高的数据速率,混凝土结构和建筑物与窗户相比将显著降低电磁信号强度。Transmeta的总体愿景是创建透明的智能反射超表面,可以放置在建筑物或车辆的窗户上,并智能地将来自基站的传入电磁波直接反射到用户(内部或外部),以提高信号接收质量。超表面还可以过滤某些频率,改变极化,或减少雷达的反射。实现这一点的挑战是:1.对于透明导体,在层厚和频率响应方面存在着光学透明度和电导率之间的权衡,需要量化。在如何将这些材料与传统的不透明电子进行电气和物理连接方面也存在实际挑战。TRANSMETA将通过研究导体的两种方法来解决这个问题:i)亚微米级的金属网状结构,其中的线条太小,人眼看不见;ii)如果结果不符合要求,还将研究使用铟锡氧化物的补充技术。为了测试它们的性能,将制造和测量透明天线和静态亚表面,例如频率选择表面。新型超曲面的设计必须基于材料的特性。Transmeta将通过使用商业电磁软件和早期测量的输入进行广泛的研究来解决这个问题。我们将研究变形表面后面的地平面的影响,我们的目标是最大限度地提高光学透明度。作为反射面的替代,透射面也将被设计在不需要后地平面的地方。必须研究制造这些超表面的实际挑战。TRANSMETA将首先制造能够反映两个固定位置之间的信号的静态(非智能)亚表面,通过在拉夫堡大学的电波暗室中阻挡直接信号进行测试。如果建筑物中存在已知的通信死区,这将是适用的,随着我们向更高频率移动,这将变得越来越常见。当然,对于这些新颖的超表面,光学透明性并不总是必不可少的,但它增加了应用范围。为了使金属表面智能化,必须将可重构性集成到系统中。TRANSMETA将通过两种技术解决这一问题:i)二氧化钒,当施加直流电时,其性质从绝缘体变为导体;ii)PIN二极管。在将这些技术整合到系统中,同时最大限度地提高透明度存在挑战。直流偏置线可以是透明的,但它们的最佳位置和方向对整体性能至关重要。实现智能化的另一个挑战是能够感知发射机和用户的位置,以便将信号反射到正确的方向。TRANSMETA将开发一种传感系统,该系统使用来自基站和用户的导频信号,然后应用信号处理来检索方向。现场可编程门阵列(FPGA)将相应地控制元表面的行为。最后,所有这些元素将被集成在一起,在我们12个工业项目合作伙伴的支持下,在真实环境中进行测试。成功完成该项目的影响将是提高Beyond-5G通信系统的能力。使用透明导体将使这些智能变形表面应用于车辆和建筑窗户。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Whittow其他文献

Wideband end-fire antenna based on modulated grooved surface plasmon polaritons
基于调制开槽表面等离子体激元的宽带端射天线
  • DOI:
    10.1038/s41598-025-10667-x
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Amitkumar Patel;Aakash Bansal;Chinthana Panagamuwa;William Whittow
  • 通讯作者:
    William Whittow
Inkjet printed 3D architectures: from silver micropillar arrays and lattices to multimaterial metamaterials
喷墨打印的3D结构:从银微柱阵列和晶格到多材料超材料
  • DOI:
    10.1016/j.mtadv.2025.100584
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Oliver Nelson-Dummett;Thomas Whittaker;William Whittow;Jacek Wojcik;Juan Francisco Reyes Luna;Caitlin McCall;Ahmet Koca;Christopher J. Tuck;Richard J.M. Hague;Lyudmila Turyanska
  • 通讯作者:
    Lyudmila Turyanska

William Whittow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Whittow', 18)}}的其他基金

Anisotropic Microwave/Terahertz Metamaterials for Satellite Applications (ANISAT)
用于卫星应用的各向异性微波/太赫兹超材料 (ANISAT)
  • 批准号:
    EP/S030301/1
  • 财政年份:
    2020
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Research Grant
SYnthesizing 3D METAmaterials for RF, microwave and THz applications (SYMETA)
合成用于射频、微波和太赫兹应用的 3D 元材料 (SYMETA)
  • 批准号:
    EP/N010493/1
  • 财政年份:
    2016
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Research Grant
3-Dimensional Wearable Patch Antennas with Improved Bandwidth and Efficiency for Athlete, Patient, Firefighter and Soldier Applications
3 维可穿戴贴片天线,具有改进的带宽和效率,适用于运动员、患者、消防员和士兵应用
  • 批准号:
    EP/K011383/1
  • 财政年份:
    2013
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Research Grant

相似海外基金

Development of 16-channel 5G Front-End Transmitters
16通道5G前端发射机开发
  • 批准号:
    568810-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
n vivo imaging of intercellular transmitters using thermal drawing bipolar electrode array probe
使用热绘图双极电极阵列探针对细胞间递质进行体内成像
  • 批准号:
    22K18941
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Highly efficient power amplifier arrays and transmitters for flexible 37-48 GHz 5G communication systems
适用于灵活的 37-48 GHz 5G 通信系统的高效功率放大器阵列和发射器
  • 批准号:
    565702-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Alliance Grants
Co-development of digital signal processing methods and circuit design techniques for novel 5G and beyond transmitters
共同开发新型 5G 及其他发射机的数字信号处理方法和电路设计技术
  • 批准号:
    RGPIN-2022-04641
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Discovery Grants Program - Individual
Mid-Wave Infrared Transmitters and Receivers for Gigabit Optical Satellite Communications
用于千兆位光学卫星通信的中波红外发射器和接收器
  • 批准号:
    568884-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Regulation of the PNMT Gene by Reactive Oxygen Species and Gas Transmitters
活性氧和气体递质对 PNMT 基因的调节
  • 批准号:
    564832-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 81.19万
  • 项目类别:
    University Undergraduate Student Research Awards
A Holistic Approach to Addressing the Unrelenting Efficiency and Linearity Challenges of 5G Transmitters
解决 5G 发射机持续存在的效率和线性挑战的整体方法
  • 批准号:
    RGPIN-2016-04159
  • 财政年份:
    2021
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Distortion Compensation Techniques for Next-Generation Wireless Transmitters
下一代无线发射机的高效失真补偿技术
  • 批准号:
    532586-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Postdoctoral Fellowships
High-speed semiconductor lasers toward beyond-terabit/s optical transmitters
面向超太比特/秒光发射机的高速半导体激光器
  • 批准号:
    20K04605
  • 财政年份:
    2020
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
合作研究:分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
  • 批准号:
    2104195
  • 财政年份:
    2020
  • 资助金额:
    $ 81.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了