QUANtum Transport for Advanced Spintronics: QUANTAS
先进自旋电子学的量子传输:QUANTAS
基本信息
- 批准号:EP/X013340/1
- 负责人:
- 金额:$ 65.05万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Spintronics is primarily concerned with the study and exploitation of the electron's spin degree of freedom in order to exceed the capabilities of current charge based microelectronics. The ever growing demand on energy hungry technologies has led to the need for next generation devices to be specifically tailored to enable new functionality, whilst minimizing power consumption. In this respect, spintronic devices offer significant benefits over current ICT technologies as the flow of a pure spin current, without the associated charge current, produces no Joule heating and therefore minimizes power consumption. The transport, manipulation and conversion of spin information across interfaces in multilayer systems are key drivers in spintronics research. For example, spin transport across a ferromagnet /normal metal interface is determined by a combination of factors including the materials involved and details of the interface, embodied within the effective spin-mixing conductance. On the other hand, the plethora of interfacial and bulk charge-spin conversion phenomena that are key to the performance of spintronic devices, such as the spin Hall and inverse spin Hall effect, can be modified by tuning the spin-orbit interaction via the application of electric fields or by modifying the disorder landscape; again, highly dependent on material and interfacial properties.In fact, two of the most promising systems to study emergent spin transport phenomena are in metallic heterostructures containing a high spin-orbit coupling material such as Pt and in magnetic insulators where the spin current is generated and propagated by the excitation of spinwaves, and propagation lengths can exceed 10's of microns. However, the challenge of designing new spintronic materials and devices often lies in the understanding of novel and unexpected phenomena that emerge. Examples of such phenomena include; the spin Hall effect, in which spin - orbit coupling enables the conversion of a charge current to a spin current; and the quantum anomalous Hall effect, a quantized Hall effect realized in systems without an external magnetic field and predicted to exhibit dissipationless current transport. Research in this area requires nanoscale control of synthesis followed by the relevant characterization of a materials properties. In a world dominated by all electrical manipulation and readout of information, transport properties are still "King".In this application we request funding for a dedicated quantum transport system to enable electrical transport measurements to be carried out for innovative experiments in the fields of spintronics and nanotechnology. The low temperature, vital for allowing quantum phenomena to be isolated from other effects, and vector field capability of the system is essential for probing quantum magnetotransport effects in nanoscale spintronic devices where often single axis fields are a limiting factor for a full understanding of the rich physics involved. The instrument, when commissioned, will provide new capability and capacity, ease of access for researchers from UK universities and industry and provide a focal point in the North East region.
自旋电子学主要是研究和开发电子的自旋自由度,以超越目前基于电荷的微电子学的能力。对高能耗技术不断增长的需求导致需要对下一代设备进行专门定制,以实现新功能,同时最大限度地降低功耗。在这方面,自旋电子器件比当前的ICT技术具有显著的优势,因为纯自旋电流的流动,没有相关的电荷电流,不会产生焦耳加热,因此最大限度地降低了功耗。多层系统中自旋信息的传递、操作和转换是自旋电子学研究的关键。例如,通过铁磁/正常金属界面的自旋输运是由一系列因素决定的,包括所涉及的材料和界面的细节,这些因素体现在有效的自旋混合电导中。另一方面,对自旋电子器件性能至关重要的大量界面和体电荷-自旋转换现象,如自旋霍尔效应和逆自旋霍尔效应,可以通过施加电场或修改无序环境来调整自旋轨道相互作用来修改;同样,高度依赖于材料和界面性质。事实上,两个最有希望研究自旋输运现象的系统是在含有高自旋轨道耦合材料(如Pt)的金属异质结构中,以及在磁绝缘体中,自旋电流是通过自旋波的激发产生和传播的,传播长度可以超过10微米。然而,设计新的自旋电子材料和器件的挑战往往在于对出现的新颖和意想不到的现象的理解。这种现象的例子包括:自旋霍尔效应,其中自旋-轨道耦合使电荷电流转换为自旋电流;以及量子反常霍尔效应,这是一种在没有外部磁场的系统中实现的量子化霍尔效应,预计会表现出无耗散电流输运。在这一领域的研究需要纳米级的合成控制,然后是材料性质的相关表征。在一个由所有电子操作和信息读出所主导的世界里,传输特性仍然是“王道”。在这个申请中,我们请求资助一个专用的量子输运系统,使电输运测量能够在自旋电子学和纳米技术领域进行创新实验。低温对于将量子现象从其他效应中分离出来至关重要,而系统的矢量场能力对于探测纳米级自旋电子器件中的量子磁输运效应至关重要,在纳米级自旋电子器件中,单轴场通常是充分理解所涉及的丰富物理的限制因素。该仪器一旦投入使用,将为英国大学和工业界的研究人员提供新的能力和能力,并为东北地区提供一个焦点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart Cavill其他文献
Stuart Cavill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart Cavill', 18)}}的其他基金
Quantum wells and electrical contacts at polar oxide surfaces
极性氧化物表面的量子阱和电接触
- 批准号:
EP/G067465/1 - 财政年份:2009
- 资助金额:
$ 65.05万 - 项目类别:
Research Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
- 批准号:31371354
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
- 批准号:30870030
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Project Osprey: Advanced Electric Foiling Propulsion Systems for Sustainable Marine Transport
鱼鹰项目:用于可持续海洋运输的先进电动水翼推进系统
- 批准号:
10082505 - 财政年份:2024
- 资助金额:
$ 65.05万 - 项目类别:
Collaborative R&D
SYNCHROMODE - Advanced traffic management solutions for synchronized and resilient multimodal transport services
SYNCHROMODE - 用于同步和弹性多式联运服务的先进交通管理解决方案
- 批准号:
10069459 - 财政年份:2023
- 资助金额:
$ 65.05万 - 项目类别:
EU-Funded
Advanced Imaging and Numerical Modelling of Segregation and Transport of Plastics in Fluidised Beds: Toward a Circular Economy for Plastics
流化床中塑料分离和传输的高级成像和数值模拟:迈向塑料循环经济
- 批准号:
EP/T034327/1 - 财政年份:2021
- 资助金额:
$ 65.05万 - 项目类别:
Research Grant
Hyper-heuristic Optimisation for Advanced Zero Carbon Public Transport Planning
先进零碳公共交通规划的超启发式优化
- 批准号:
10007532 - 财政年份:2021
- 资助金额:
$ 65.05万 - 项目类别:
Feasibility Studies
Investigation of turbulence driven transport using an advanced laser diagnostics in the reactor relevant plasma
在反应堆相关等离子体中使用先进的激光诊断技术研究湍流驱动的传输
- 批准号:
21H04458 - 财政年份:2021
- 资助金额:
$ 65.05万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding Advanced Heat and Mass Transport Control and Non-Noble Metal Catalyst Designs for Low Temperature Polyolefin Up-Cycling
了解用于低温聚烯烃升级循环的先进传热和传质控制以及非贵金属催化剂设计
- 批准号:
2051231 - 财政年份:2021
- 资助金额:
$ 65.05万 - 项目类别:
Standard Grant
Advanced fuel and propulsion technologies for low-carbon future transport
用于低碳未来交通的先进燃料和推进技术
- 批准号:
MR/T042915/1 - 财政年份:2020
- 资助金额:
$ 65.05万 - 项目类别:
Fellowship
An analysis of dynamic network traffic flow based on the game theory for advanced transport management
基于博弈论的先进传输管理动态网络流量分析
- 批准号:
20K14843 - 财政年份:2020
- 资助金额:
$ 65.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electromagnetic Turbulence and Advanced Transport Modelling
电磁湍流和高级传输建模
- 批准号:
2440085 - 财政年份:2020
- 资助金额:
$ 65.05万 - 项目类别:
Studentship
Experimental verification of beta effect on symmetry and heat/turbulent transport in advanced heliotron configuration
先进日光管配置中 β 效应对对称性和热/湍流传输的实验验证
- 批准号:
19H01875 - 财政年份:2019
- 资助金额:
$ 65.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




