Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
基本信息
- 批准号:EP/X015327/1
- 负责人:
- 金额:$ 75.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The advancement of numerous technologies has become increasingly reliant on the ability to dissipate large quantities of heat from small areas. Current designs in power electronics, supercomputers, lasers, X-ray medical devices, nuclear fusion reactor blankets, spacecraft, and hybrid vehicle electronics, and future improvements, rely on record high heat transfer rates. This rapid increase in heat dissipation rates required by such devices has led to a transition from more traditional fan-cooled heat-sink attachments to liquid cooling techniques. Liquid cooling techniques operating in single-phase, however, have now reached their limit being forced to run at very low inlet temperatures and exceedingly high mass flow rates, resulting in unacceptably high pressure drops and surface temperature gradients. Innovative approaches are urgently needed to overcome these significant shortcomings: one such approach is spray-cooling. Spray-cooling uses a nozzle to break up the liquid coolant into fine droplets that impinge individually on a heated surface. 'Low'- and 'high-temperature' spray-cooling applications involve surface temperatures below and above the critical heat flux (CHF), respectively. Single-phase spray-cooling (relies on liquid sensible heat rise only) provides greater operational stability and spatially uniform heat removal than liquid cooling, reducing the likelihood of large surface thermal gradients, particularly important for fragile electronic components. Two-phase spray-cooling (relies on liquid sensible heat rise and latent heat), are superior to single-phase systems and furthermore, compared to pool/flow boiling alternative systems, offer far less resistance to vapour removal from a heated surface enabling superior drop-surface contact . In fact, the CHF increases from 1.2 MW/m2 (for water pool boiling) to 10 MW/m2 for water sprays in two-phase applications.SANGRIA is an ambitious 3-year collaborative research programme aimed at investigating the fundamental mechanisms and transfer processes underlying spray-cooling. This project combines cutting-edge experimental techniques that furnish spatiotemporally-resolved diagnostics of the thermal, interfacial, and hydrodynamic fields, with multi-scale theory, modelling and 3-D high-fidelity numerical simulation that bridge the molecular and continuum-scales. The deep insights generated from SANGRIA will be harnessed to provide tools that are practically implementable by our industrial partners in order to maximise impact.Industrial and academic partners will provide additional technical support and feedback during the research programme plus pathways for direct industrial impact. The industrial partners include possible users of this technology: TMD Ltd (manufacturers of electronic equipment, high heat flux devices); Oxford naNosystems (manufacturers of enhanced heat transfer surfaces); ANSYS (Software development); Siemens (Software development); Spraying Systems Co. (Nozzle manufacturers); Syngenta (users of nozzles). LaVision offered a 15% discount on their Particle Master System. The academic partners from the University of Nottingham, Sorbonne University, Technical University of Darmstadt and Kyushu University are internationally recognised experts in single and two-phase thermal systems, including spray cooling. Participation and presentations during the HEXAG and PIN meetings will facilitate feedback and technology transfer.
许多技术的进步越来越依赖于从小区域散失大量热量的能力。目前电力电子、超级计算机、激光、X射线医疗设备、核聚变反应堆包层、航天器和混合动力汽车电子设备的设计,以及未来的改进,都依赖于创纪录的高传热率。这类设备所需散热率的快速增加导致了从更传统的风扇冷却散热器附件向液体冷却技术的过渡。然而,在单相运行的液体冷却技术现在已经达到了极限,被迫在非常低的入口温度和极高的质量流量下运行,导致不可接受的高压力降和表面温度梯度。迫切需要创新的方法来克服这些重大缺点:喷雾冷却就是这样一种方法。喷雾冷却使用喷嘴将液体冷却剂分解成细小的液滴,这些液滴分别撞击在加热的表面上。“低”和“高温”喷雾冷却应用分别涉及低于和高于临界热流密度(CHF)的表面温度。与液体冷却相比,单相喷雾冷却(仅依靠液体显热上升)提供了更大的运行稳定性和空间均匀的散热,降低了表面温度梯度较大的可能性,这对易碎的电子元件尤其重要。两相喷雾冷却(依靠液体显热上升和潜热)优于单相系统,而且,与池/流动沸腾替代系统相比,对从受热表面去除蒸汽的阻力要小得多,从而实现了更好的液滴表面接触。事实上,两阶段应用中喷水的CHF从1.2兆瓦/平方米(水池沸腾)增加到10兆瓦/平方米。SANGRIA是一个雄心勃勃的为期3年的合作研究计划,旨在研究喷雾冷却的基本机制和传递过程。该项目将尖端实验技术与多尺度理论、模型和3D高保真数值模拟相结合,这些技术提供了对热、界面和流体动力场的时空分辨诊断,并在分子和连续尺度之间架起了桥梁。Sangria所产生的深刻见解将被利用,以提供我们的工业合作伙伴实际上可以实施的工具,以最大限度地发挥影响。工业和学术合作伙伴将在研究计划期间提供额外的技术支持和反馈,以及直接工业影响的途径。工业合作伙伴包括这项技术的潜在用户:TMD有限公司(电子设备、高热流密度设备制造商)、牛津纳米系统公司(强化换热表面制造商)、Ansys(软件开发)、西门子(软件开发)、喷雾系统有限公司(喷嘴制造商)、先正达(喷嘴用户)。LaVision为他们的粒子主控系统提供了15%的折扣。来自诺丁汉大学、索邦大学、达姆施塔特工业大学和九州大学的学术合作伙伴是国际公认的单相和两相热系统专家,包括喷雾冷却。在HIGAG和PIN会议期间的参与和介绍将促进反馈和技术转让。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Khellil Sefiane其他文献
Study on liquid-gas interface at nanoscale using transmission electron microscopy
利用透射电子显微镜研究纳米尺度液-气界面
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yoko Tomo,Alexandros Askounis;Khellil Sefiane;Yasuyuki Takata;Koji Takahashi - 通讯作者:
Koji Takahashi
フッ素系ガスによる表面修飾処理されたLiF微粒子の表面状態観察
氟系气体表面改性LiF微粒的表面状态观察
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yuki Fukatani;Masamichi Kohno;Yasuyuki Takata;Khellil Sefiane;Jungho Kim;上野 将平,竹村研治郎,横田眞一,枝村一弥;渡辺徹,森川文登,金在虎,米沢晋,高島正之 - 通讯作者:
渡辺徹,森川文登,金在虎,米沢晋,高島正之
Thermocapillary-driven flows in pure water drops on a local hot-spot
局部热点上纯水滴的热毛细管驱动流动
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yutaku Kita;Huacheng Zhang;Alexandros Askounis;Yasuyuki Takata;Khellil Sefiane - 通讯作者:
Khellil Sefiane
Quantifying vapour field around evaporating sessile drops using background-oriented schlieren technique
使用背景导向纹影技术量化蒸发固着液滴周围的蒸汽场
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yutaku Kita;Anushka Kapoor;Khellil Sefiane;Yasuyuki Takata - 通讯作者:
Yasuyuki Takata
Flow boiling characteristics of HFE-7000 in high aspect ratio microchannels with the effect of flow orientation
- DOI:
10.1016/j.applthermaleng.2024.124094 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Arif Widyatama;Gail Duursma;Daniel Orejon;Khellil Sefiane - 通讯作者:
Khellil Sefiane
Khellil Sefiane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Khellil Sefiane', 18)}}的其他基金
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
- 批准号:
EP/S019588/1 - 财政年份:2019
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
New Engineering Concepts from Phase Transitions: A Leidenfrost Engine
相变的新工程概念:莱顿弗罗斯特发动机
- 批准号:
EP/P005705/1 - 财政年份:2017
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
Flow Boiling and Condensation of Mixtures in Microscale
微尺度混合物的流动沸腾和冷凝
- 批准号:
EP/N011341/1 - 财政年份:2016
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
Boiling in microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes
微通道沸腾:高热通量设备闭环冷却系统集成设计
- 批准号:
EP/K00963X/1 - 财政年份:2013
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
STATISTICAL RATE THEORY (SRT) AND INTERFACIAL CONDITIONS DURING EVAPORATION OF LIQUIDS
统计速率理论 (SRT) 和液体蒸发过程中的界面条件
- 批准号:
EP/F057547/1 - 财政年份:2008
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
BOILING HEAT TRANSFER WITH CONTROLLED ARRAYS OF NUCLEATION SITES ON SILICON SURFACES
硅表面成核位点受控阵列的沸腾传热
- 批准号:
EP/C532813/1 - 财政年份:2006
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
Boiling and Condensation in Microchannels
微通道中的沸腾和冷凝
- 批准号:
EP/D500109/1 - 财政年份:2006
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
相似国自然基金
太阳能吸附制冷管在光热制冷循环中传热特性研究
- 批准号:50976073
- 批准年份:2009
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
SBIR 第二阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2321862 - 财政年份:2024
- 资助金额:
$ 75.84万 - 项目类别:
Cooperative Agreement
Spray cooling high power dissipation Applications (SANGRIA): From fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础到设计
- 批准号:
EP/X015351/1 - 财政年份:2024
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
- 批准号:
2336038 - 财政年份:2024
- 资助金额:
$ 75.84万 - 项目类别:
Standard Grant
Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
- 批准号:
EP/X015335/1 - 财政年份:2024
- 资助金额:
$ 75.84万 - 项目类别:
Research Grant
Enhancing cooling power caused by radiation
增强辐射引起的冷却能力
- 批准号:
22H01917 - 财政年份:2022
- 资助金额:
$ 75.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Compact cooling solutions for power electronics
电力电子设备的紧凑型冷却解决方案
- 批准号:
549884-2020 - 财政年份:2022
- 资助金额:
$ 75.84万 - 项目类别:
Alliance Grants
Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
- 批准号:
10842926 - 财政年份:2022
- 资助金额:
$ 75.84万 - 项目类别:
A Revolutionary Cloud Service That Uses Liquid-Submersion for Efficient Cooling, Reducing the Environmental Impacts of These Systems and Providing Power Consumption Savings
革命性的云服务,使用液体浸没式进行高效冷却,减少这些系统对环境的影响并节省功耗
- 批准号:
91437 - 财政年份:2021
- 资助金额:
$ 75.84万 - 项目类别:
Collaborative R&D
STTR Phase I: Innovative Two-Phase Cooling with Micro Closed Loop Pulsating Heat Pipes for High Power Density Electronics
STTR 第一阶段:用于高功率密度电子产品的创新两相冷却微闭环脉动热管
- 批准号:
2124797 - 财政年份:2021
- 资助金额:
$ 75.84万 - 项目类别:
Standard Grant
Compact cooling solutions for power electronics
电力电子设备的紧凑型冷却解决方案
- 批准号:
549884-2020 - 财政年份:2021
- 资助金额:
$ 75.84万 - 项目类别:
Alliance Grants