Development of AI/ML-ready shared repository for parametric multiphysics modeling datasets: standardization for predictive modeling of selective brain cooling after traumatic injury
开发用于参数多物理场建模数据集的 AI/ML 就绪共享存储库:创伤后选择性脑冷却预测模型的标准化
基本信息
- 批准号:10842926
- 负责人:
- 金额:$ 30.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAffectAnatomyArtificial IntelligenceBasic ScienceBehaviorBig DataBiomedical ResearchBrainBrain InjuriesCancerousCardiac Surgery proceduresCathetersCerebrumClinicalClinical ResearchCodeCollaborationsCommunitiesComplexComputer softwareDataData EngineeringData FilesData ScienceData SetDatabasesDevelopmentDevelopment PlansDevice DesignsDevicesDocumentationEarly DiagnosisElectromagneticsEngineeringExploratory/Developmental Grant for Diagnostic Cancer ImagingFundingFutureGoalsGrantHeadHealth Care CostsInformation TechnologyInjuryIntracranial PressureLearning SkillLesionLocationLong-Term EffectsMachine LearningMalignant NeoplasmsMapsMedical DeviceMedical Device DesignsMedicineModelingMonitorOutcomeOutputPatient-Focused OutcomesPatientsPerfusionPhasePhysicsPhysiologicalPower SourcesPrediction of Response to TherapyProbabilityProceduresProcessPropertyPublic HealthPythonsQuality of lifeReadabilityResearchResearch PersonnelResearch SupportResource-limited settingRunningStandardizationStudentsSystemTBI PatientsTechnologyTemperatureTestingThermal Ablation TherapyTimeTissuesTrainingTraumaTraumatic injuryTreatment ProtocolsUnited States National Institutes of HealthValidationVariantVentricularWorkaggressive breast cancerbehavior predictionblood perfusionbrain tissueclinical applicationclinically relevantcomplex datadata curationdata managementdata modelingdata standardsdeep learning modeldesignexperiencefile formatgraduate studentimprovedinnovationinsightlarge datasetslearning communitymachine learning algorithmmanufacturemicrowave electromagnetic radiationmultidisciplinarynatural hypothermianovelopen sourcepre-clinicalpredictive modelingprogramsreal time monitoringrepositoryresponsesensorshared repositorysignal processingsimulationskill acquisitionskillsstudent participationtherapy designtooltreatment optimizationtreatment planningtumorundergraduate studentusability
项目摘要
ABSTRACT
By rapidly and selectively cooling injured brain tissue, we can dramatically mitigate the long-term effect of trauma
to the head. As part of the NIH-funded R21, we are developing a stylet that could be easily inserted in commonly
used extra ventricular catheters to add cooling to intracranial pressure control. As we are developing the device,
we also realize the need for using AI/ML algorithm for optimizing design of the device and treatment planning.
Unfortunately all the commercially available software that run multiphisic numerical simulation produce data that
is not ready for processing by artificial intelligence and machine learning (AI/ML) technologies. Although AI/ML
are data-driven technologies could potentially revolutionize biomedical research, most research data is not
readily useable by AI/ML applications. In particular, there is the widespread and urgent need to make AI-ML
ready the large parametric datasets generated by multiphysics numerical simulations.
This supplemental project aim to address that issue and create a framework template for other clinical/basic
research groups to make AI/ML ready data from complex predictive multiphysics modeling to enhance
significantly their optimization and prediction capabilities. These simulations can rapidly and accurately predict
the behavior of complex biomedical devices in phantom, preclinical and clinical settings. Parametric predictive
multiphysics modeling (PPMM) allows researchers/clinicians/patients to study the effects of potential variations
in manufacturing, treatment parameters, anatomical features and physiological responses on treatment
procedures. These sensitivity studies produce significantly large datasets that could be rapidly process by AI/ML
algorithms to optimize clinical procedures. As part of a recently awarded R21 grant, we are developing a new
device that can rapidly and selectively cool the cerebral tissue of traumatic brain injury patients. Rapid selective
brain cooling could dramatically improve patient outcomes by minimizing secondary injuries.
PPMM using commercially-available software (Comsol, Ansys, Matlab, CST and others) is used both at the
design stage and during the treatment planning phase. However, the significant amount of PPMM data is not
ready for AI/ML processing since each 4D database lack of reference to the original set of parameter (i.e. tissue
properties, perfusion rate, type and location of injury…). We thus plan, within the proposed supplemental
research, to address these specific aims: 1) Develop and disseminate an AI/ML-Ready PPMM dataset 2)
Demonstrate the Usability of the AI/ML-Ready PPMM dataset in an AI/ML application (optimization of treatment
planning) 3) Demonstrate the usability of the AI/ML-ready PPMM dataset with student engagement activities.
Although the research will be focused on brain cooling PPMM, the approach will be easily expandable to other
PPMM such as cancer thermal ablation, brain temperature monitoring of hypothermic cardiac surgeries and early
detection of aggressive breast cancer. The proposed research will pave the way to the full potential of AI/ML
technologies in tandem with multiphysics simulations for the benefit of traumatic brain injury patients.
摘要
通过快速和选择性地冷却受伤的脑组织,我们可以大大减轻创伤的长期影响
打在头上作为NIH资助的R21的一部分,我们正在开发一种可以很容易地插入通常的探针,
使用额外的脑室导管来增加颅内压控制的冷却。在我们开发设备的过程中,
我们还认识到需要使用AI/ML算法来优化设备和治疗计划的设计。
不幸的是,所有运行多相数值模拟的商业软件产生的数据
尚未准备好通过人工智能和机器学习(AI/ML)技术进行处理。AI/ML
数据驱动的技术可能会彻底改变生物医学研究,但大多数研究数据并不
易于AI/ML应用程序使用。特别是,有广泛和迫切的需要,使AI-ML
准备好由多物理场数值模拟生成的大型参数化数据集。
这个补充项目旨在解决这个问题,并为其他临床/基础
研究小组从复杂的预测多物理场建模中获取AI/ML就绪数据,以增强
尤其是它们的优化和预测能力。这些模拟可以快速准确地预测
复杂生物医学器械在体模、临床前和临床环境中的行为。参数预测
多物理场建模(PPMM)允许研究人员/临床医生/患者研究潜在变化的影响
在制造过程中,治疗参数、解剖特征和治疗的生理反应
程序.这些敏感性研究产生了可以由AI/ML快速处理的非常大的数据集
优化临床程序的算法。作为最近授予的R21赠款的一部分,我们正在开发一种新的
一种能够快速选择性冷却创伤性脑损伤患者脑组织的装置。快速选择
大脑冷却可以通过最小化二次伤害来显著改善患者的治疗效果。
PPMM使用商业上可获得的软件(Comsol、Ansys、Matlab、CST和其他),用于
设计阶段和治疗计划阶段。然而,大量的PPMM数据并不
准备好进行AI/ML处理,因为每个4D数据库缺乏对原始参数集(即组织)的参考
性质、灌注率、损伤的类型和位置.)。因此,我们计划在拟议的补充
研究,以解决这些具体目标:1)开发和传播AI/ML就绪PPMM数据集2)
证明AI/ML就绪PPMM数据集在AI/ML应用程序中的可用性(治疗优化
3)通过学生参与活动展示AI/ML就绪PPMM数据集的可用性。
虽然这项研究将集中在大脑冷却PPMM上,但这种方法很容易扩展到其他领域。
PPMM,如癌症热消融,低温心脏手术的脑温监测和早期
检测侵袭性乳腺癌。拟议的研究将为AI/ML的全部潜力铺平道路
技术与多物理场模拟相结合,为创伤性脑损伤患者带来好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paolo Francesco Maccarini其他文献
Paolo Francesco Maccarini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paolo Francesco Maccarini', 18)}}的其他基金
BREEZE: New Ventricular Direct Cooling Stylet to Mitigate Secondary Brain Injury
BREEZE:新型心室直接冷却管心针可减轻继发性脑损伤
- 批准号:
10528204 - 财政年份:2022
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8758405 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
8904688 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
A novel low-cost and noninvasive device to measure deep temperature in the body
一种新型低成本无创设备,用于测量体内深层温度
- 批准号:
9100864 - 财政年份:2014
- 资助金额:
$ 30.34万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8324550 - 财政年份:2011
- 资助金额:
$ 30.34万 - 项目类别:
Miniature Deep Thermal Imager for Continuous Monitoring of BAT Metabolism
用于连续监测 BAT 代谢的微型深层热成像仪
- 批准号:
8189583 - 财政年份:2011
- 资助金额:
$ 30.34万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 30.34万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 30.34万 - 项目类别:
Standard Grant