Learning of safety critical model predictive controllers for autonomous systems
自主系统安全关键模型预测控制器的学习
基本信息
- 批准号:EP/X015459/1
- 负责人:
- 金额:$ 50.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern autonomous systems such as mobile robots and autonomous vehicles rely heavily on feedback controllers for motion control, particularly for path-following and obstacle avoidance, where they are employed to follow a trajectory set by a higher-level motion planner in a hierarchical control scheme. Model Predictive Control (MPC) is a popular controller choice for obstacle avoidance, as it allows constraints to be specified to ensure that the mobile robot or autonomous vehicle does not collide with obstacles. The behaviour of MPC is well understood from years of theoretical development and industrial practice, providing strong safety assurances, but considerable time and expert knowledge is required to implement it, especially in safety-critical applications such as autonomous vehicles.In recent years, research on deep Reinforcement Learning (RL) has provided new methods to automatically find nonlinear feedback controllers for challenging control problems. But unlike MPC, existing RL methods typically have no guarantees of stability or of constraint satisfaction, and for safety-critical applications it is difficult to verify their behaviour. To combine the predictability and safety guarantees of MPC with the power and convenience of modern RL methods, this project will develop methods to automatically learn MPC controllers in actor-critic RL frameworks, considering motion control and obstacle avoidance problems for autonomous vehicles. This will be a direct application of recent mathematical results showing that convex optimisations, such as MPC, can be employed as a trainable layer in RL frameworks such as PyTorch, allowing them to be learned. The goal is to enable rapid design and prototyping of path-following type MPC without requiring expert-knowledge of the underlying MPC algorithm, therefore reducing development time and cost and improving safety and reliability of future mobile robots and autonomous vehicles.To ensure the new algorithms are practically applicable, an example application of motorcycle path-following and stability assistance will be used to guide their development. The problem of stabilising a two-wheeled vehicle in forward motion to follow a predefined path, for example via steering actuation, is challenging and has important applications in the emerging area of active safety systems for motorcycles and scooters. For long term impact and to encourage adoption of the new methods by autonomous systems researchers, the new methods developed will be included in an open-source software library published on Github.
诸如移动的机器人和自主车辆的现代自主系统在很大程度上依赖于用于运动控制的反馈控制器,特别是用于路径跟随和障碍物回避,其中它们被用来跟随由分层控制方案中的更高级别的运动规划器设置的轨迹。模型预测控制(MPC)是用于避障的流行控制器选择,因为它允许指定约束以确保移动的机器人或自主车辆不与障碍物碰撞。MPC的行为在多年的理论发展和工业实践中得到了很好的理解,提供了强有力的安全保证,但需要大量的时间和专业知识来实现它,特别是在自动驾驶汽车等安全关键应用中。近年来,深度强化学习(RL)的研究为自动寻找非线性反馈控制器提供了新的方法,以解决具有挑战性的控制问题。但与MPC不同的是,现有的RL方法通常无法保证稳定性或约束满足,并且对于安全关键应用,很难验证它们的行为。为了将MPC的可预测性和安全性保证与现代RL方法的功能和便利性相结合,该项目将开发在Actor-Critic RL框架中自动学习MPC控制器的方法,考虑自动驾驶汽车的运动控制和避障问题。这将是最近的数学结果的直接应用,表明凸优化(如MPC)可以用作PyTorch等RL框架中的可训练层,允许它们被学习。目标是实现路径跟踪型MPC的快速设计和原型化,而无需底层MPC算法的专家知识,从而减少开发时间和成本,并提高未来移动的机器人和自动驾驶汽车的安全性和可靠性。为了确保新算法的实际应用,摩托车路径跟踪和稳定性辅助的示例应用将用于指导其开发。例如通过转向致动来稳定向前运动中的两轮车辆以遵循预定义路径的问题是具有挑战性的,并且在摩托车和踏板车的主动安全系统的新兴领域中具有重要应用。为了产生长期影响并鼓励自治系统研究人员采用新方法,开发的新方法将包含在Github上发布的开源软件库中。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy-efficient automated driving: effect of a naturalistic eco-ACC on a following vehicle
- DOI:10.1109/icm54990.2023.10102074
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:James Fleming;W. Midgley
- 通讯作者:James Fleming;W. Midgley
Estimating friction coefficient using generative modelling
- DOI:10.1109/icm54990.2023.10101932
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Mohammad Otoofi;William J. B. Midgley;L. Laine;Henderson Leon;L. Justham;James Fleming
- 通讯作者:Mohammad Otoofi;William J. B. Midgley;L. Laine;Henderson Leon;L. Justham;James Fleming
Model-free Road Friction Estimation using Machine Learning
使用机器学习进行无模型道路摩擦力估计
- DOI:10.1109/icm54990.2023.10102087
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Midgley W
- 通讯作者:Midgley W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Fleming其他文献
LPV Hydrodynamic Controller for a 15MW Floating Offshore Wind Turbine
用于 15MW 浮式海上风力发电机的 LPV 水动力控制器
- DOI:
10.1109/control60310.2024.10532018 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Qusay Hawari;Taeseong Kim;James Fleming - 通讯作者:
James Fleming
Droop Control of Multi-Bus DC Microgrids Towards Economic Operation and Stability
多母线直流微电网的下垂控制促进经济运行和稳定
- DOI:
10.1109/peas58692.2023.10395020 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuxin Zhu;Fei Wang;Zhengyu Lin;James Fleming - 通讯作者:
James Fleming
Lqg Control for Hydrodynamic Compensation on Large Floating Wind Turbines
大型浮式风力发电机水动力补偿的 Lqg 控制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Qusay Hawari;Taeseong Kim;Christopher Ward;James Fleming - 通讯作者:
James Fleming
Combined Gene Expression and Donor-Derived Cell-Free DNA Analysis for Improved Detection of Acute Rejection in Liver Transplant Recipients
联合基因表达和供体来源的无细胞 DNA 分析以改善肝移植受者急性排斥反应的检测
- DOI:
10.1016/j.ajt.2024.12.230 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Steven Kleiboeker;Rohita Sinha;Zixuan Zhu;James Fleming;Kenny Chen;Lihui Zhao;Josh Levitsky - 通讯作者:
Josh Levitsky
Antitumor Activity of IMC-038525, a Novel Oral Tubulin Polymerization Inhibitor.
IMC-038525(一种新型口服微管蛋白聚合抑制剂)的抗肿瘤活性。
- DOI:
10.1593/tlo.10160 - 发表时间:
2010 - 期刊:
- 影响因子:5
- 作者:
M. C. Tuma;A. Malikzay;Xiaohu Ouyang;D. Surguladze;James Fleming;Stan Mitelman;M. Camara;B. Finnerty;J. Doody;Eugene Chekler;P. Kussie;J. Tonra - 通讯作者:
J. Tonra
James Fleming的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Fleming', 18)}}的其他基金
Creating a federated cloud-based TRE to facilitate consortium-based research and interoperability between existing institutions/TREs
创建基于云的联合 TRE,以促进现有机构/TRE 之间基于联盟的研究和互操作性
- 批准号:
MC_PC_21027 - 财政年份:2022
- 资助金额:
$ 50.98万 - 项目类别:
Intramural
Climate Change Science, Environmental Challenges, and Cultural Anxiety: Historical and Social Perspectives
气候变化科学、环境挑战和文化焦虑:历史和社会视角
- 批准号:
0843162 - 财政年份:2009
- 资助金额:
$ 50.98万 - 项目类别:
Standard Grant
RUI: The Carbon Dioxide Theory of Climate Change
RUI:气候变化的二氧化碳理论
- 批准号:
0114998 - 财政年份:2001
- 资助金额:
$ 50.98万 - 项目类别:
Standard Grant
相似国自然基金
我国家庭环境下的食品安全风险评价及综合干预研究
- 批准号:71103074
- 批准年份:2011
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
荷人卵巢上皮癌裸鼠冻融卵巢组织移植的安全性研究
- 批准号:30960408
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
心脏超声造影的安全性研究
- 批准号:30870721
- 批准年份:2008
- 资助金额:31.0 万元
- 项目类别:面上项目
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 50.98万 - 项目类别:
Continuing Grant
Deep Learning Based Pharmacokinetic Model for Vancomycin
基于深度学习的万古霉素药代动力学模型
- 批准号:
10804308 - 财政年份:2023
- 资助金额:
$ 50.98万 - 项目类别:
CAREER: Towards a Theory of Robust Learning & Control for Safety-Critical Autonomous Systems
职业生涯:迈向稳健学习理论
- 批准号:
2045834 - 财政年份:2021
- 资助金额:
$ 50.98万 - 项目类别:
Continuing Grant
FW-HTF-RL: Learning systems that enable healthcare workers to perfect safety-critical hospital work
FW-HTF-RL:学习系统使医护人员能够完善安全关键的医院工作
- 批准号:
2026498 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
Standard Grant
Building a Learning Healthcare System to Understand and Improve Sepsis Outcomes in the VA TeleICU Network
建立学习医疗系统以了解和改善 VA TeleICU 网络中的败血症结果
- 批准号:
10221781 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
A Learning Health System Approach to Precision Sedation and Analgesia in Critically-Ill Children
危重儿童精确镇静和镇痛的学习健康系统方法
- 批准号:
10370414 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
Resilience Evaluation of Safety-Critical Machine Learning Applications
安全关键型机器学习应用的弹性评估
- 批准号:
553173-2020 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
University Undergraduate Student Research Awards
A Learning Health System Approach to Precision Sedation and Analgesia in Critically-Ill Children
危重儿童精确镇静和镇痛的学习健康系统方法
- 批准号:
9976096 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
A Learning Health System Approach to Precision Sedation and Analgesia in Critically-Ill Children
危重儿童精确镇静和镇痛的学习健康系统方法
- 批准号:
10612398 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别:
Building a Learning Healthcare System to Understand and Improve Sepsis Outcomes in the VA TeleICU Network
建立学习医疗系统以了解和改善 VA TeleICU 网络中的败血症结果
- 批准号:
10663774 - 财政年份:2020
- 资助金额:
$ 50.98万 - 项目类别: