EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizons 2021:人工细胞和生物细胞之间的工程合成突触。
基本信息
- 批准号:EP/X018903/1
- 负责人:
- 金额:$ 25.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cells from the immune system have the ability to target and kill other undesirable cells, for instance cancer cells. A key mechanism underpinning recognition and killing is the formation of an "immune synapse" - a region of close contact between the membranes of the target and immune cell. Among other functions, the immune synapse enables localised and selective delivery of toxic compounds from the immune cell to the target cell, leading to death of the target. Besides playing a critical role in the natural immune response, immune cells known as T cells form the basis of modern cancer immunotherapies, where T cells extracted from the patients are genetically engineered to help them target the specific cancer the patient has, before being reintroduced in the body. These therapies have proven very successful, particularly for some types of blood cancer, but their broad application is hindered by the technical challenges associated to performing genetic engineering on patient cells, which results in very high costs for healthcare systems.Inspired by the action of immune cells here we propose to construct "artificial immune cells" able to selectively and controllably form "synthetic immune synapses", which target cancer cells and inject them with anti-cancer drugs. If successful, these synthetic cell-like agents could underpin novel therapies that represent a more scalable and sustainable alternative to live-cell immunotherapies.With the term "artificial cell" we describe a broad variety of fully synthetic micromachines constructed from scratch, borrowing building blocks from biology (proteins, lipid membranes) and complementing them with synthetic nanostructures. Artificial cells can serve as model systems to better understand basic biological phenomena but are often designed to target specific problems in healthcare, such as diagnostics and therapeutics. Compared to live biological cells, artificial cells are easier to program, cheaper to manufacture and carry fewer risks and ethical concerns. However, artificial cells are still unable to replicate some of the highly complex behaviours of biological cells, including the ability to target and kill cancer cells. With the proposed research project, we plan to tackle this bottleneck through a combination of protein engineering and DNA nanotechnology, which we will use to construct new molecular machines that mediate immune synapse formation. Protein engineering takes natural proteins as the starting point, and then modifies them to impart new functionalities. DNA nanotechnology, in turn, utilises synthetic nucleic acid molecules like molecular Lego bricks, to construct functional nanoscale machines with precisely controlled shape and functionality. Synthetic capsules (vesicles) formed from lipid bilayers and mimicking the membrane of biological cells will constitute the chassis of the artificial cells, which will be decorated with the synapse forming protein/DNA machinery and encapsulate the therapeutic agent to be injected in the cancer cell.For this initial proof-of-concept study we will construct and optimise the protein and DNA machinery and equip the artificial cells with it, before testing the so-formed agents on model cancer cells in vitro, using "test tube" experiments that mimic the conditions found in the body. The information we gather on the robustness of the artificial cells and their ability to target cancer cells selectively and effectively will inform subsequent translational studies in which we will test the artificial therapeutic agents in vivo, starting with animal models.
来自免疫系统的细胞有能力靶向和杀死其他不需要的细胞,例如癌细胞。支持识别和杀伤的关键机制是“免疫突触”的形成-靶细胞和免疫细胞膜之间的紧密接触区域。在其他功能中,免疫突触能够将有毒化合物从免疫细胞局部和选择性地递送到靶细胞,导致靶细胞死亡。除了在自然免疫反应中发挥关键作用外,被称为T细胞的免疫细胞构成了现代癌症免疫疗法的基础,其中从患者中提取的T细胞经过基因工程改造,以帮助它们靶向患者的特定癌症,然后再重新引入体内。这些疗法已被证明非常成功,特别是对于某些类型的血癌,但它们的广泛应用受到与对患者细胞进行基因工程相关的技术挑战的阻碍,这导致医疗保健系统的成本非常高。受免疫细胞作用的启发,我们提出构建能够选择性和可控地形成“合成免疫突触”的“人工免疫细胞”,针对癌细胞注射抗癌药物。如果成功的话,这些合成的细胞样试剂可以支撑新的疗法,代表一个更可扩展和可持续的替代活细胞免疫疗法。“人工细胞”一词,我们描述了各种各样的完全合成的微机器从头开始构建,借用生物学的构建模块(蛋白质,脂质膜),并与合成纳米结构互补。人工细胞可以作为模型系统,以更好地理解基本的生物现象,但通常是针对医疗保健中的特定问题而设计的,如诊断和治疗。与活的生物细胞相比,人工细胞更容易编程,制造成本更低,风险和伦理问题更少。然而,人工细胞仍然无法复制生物细胞的一些高度复杂的行为,包括靶向和杀死癌细胞的能力。在拟议的研究项目中,我们计划通过蛋白质工程和DNA纳米技术的结合来解决这一瓶颈,我们将用它来构建介导免疫突触形成的新分子机器。蛋白质工程以天然蛋白质为出发点,然后对其进行修饰以赋予新的功能。DNA纳米技术,反过来,利用合成核酸分子,如分子乐高积木,构建具有精确控制的形状和功能的功能性纳米机器。合成胶囊由脂质双层形成并模仿生物细胞膜的囊泡将构成人工细胞的底盘,其将用突触形成蛋白质/DNA机器装饰并封装待注射到癌细胞中的治疗剂。对于这个初步的概念验证研究,我们将构建和优化蛋白质和DNA机器并为其配备人工细胞,然后在体外模型癌细胞上测试如此形成的药剂,使用模拟体内条件的“试管”实验。我们收集的关于人工细胞的稳健性及其选择性和有效靶向癌细胞的能力的信息将为后续的转化研究提供信息,在这些研究中,我们将从动物模型开始,在体内测试人工治疗剂。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Di Michele其他文献
Lorenzo Di Michele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenzo Di Michele', 18)}}的其他基金
2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA
2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞
- 批准号:
BB/Y000196/1 - 财政年份:2024
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
- 批准号:
BB/X012557/1 - 财政年份:2023
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant
A programmable, cell-agnostic DNA nano-technology platform for CRISPR gene editing
用于 CRISPR 基因编辑的可编程、与细胞无关的 DNA 纳米技术平台
- 批准号:
EP/V048058/1 - 财政年份:2021
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant
相似海外基金
New Horizons in Quinonedimethide Chemistry
醌二甲基化学的新视野
- 批准号:
DP240100555 - 财政年份:2024
- 资助金额:
$ 25.78万 - 项目类别:
Discovery Projects
AMPQuest - Journeying to new horizons in treating drug-resistant infections.
AMPQuest - 迈向治疗耐药感染的新视野。
- 批准号:
BB/Y514019/1 - 财政年份:2024
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 25.78万 - 项目类别:
Standard Grant
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 25.78万 - 项目类别:
Studentship
New horizons in Electrostatic Force Microscopy
静电力显微镜的新视野
- 批准号:
EP/X018024/1 - 财政年份:2023
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 25.78万 - 项目类别:
Discovery Grants Program - Individual
Scanning New Horizons: Entanglement, Holography & Gravity
扫描新视野:纠缠、全息术
- 批准号:
SAPIN-2019-00031 - 财政年份:2022
- 资助金额:
$ 25.78万 - 项目类别:
Subatomic Physics Envelope - Individual
New models, new approaches, new horizons in corneal nerve regeneration
角膜神经再生的新模型、新方法、新视野
- 批准号:
10574591 - 财政年份:2022
- 资助金额:
$ 25.78万 - 项目类别:
New models, new approaches, new horizons in corneal nerve regeneration
角膜神经再生的新模型、新方法、新视野
- 批准号:
10334864 - 财政年份:2022
- 资助金额:
$ 25.78万 - 项目类别:
New Horizons in Multivariate Preprocessing (MULTIPROCESS)
多变量预处理 (MULTIPROCESS) 的新视野
- 批准号:
EP/V044621/1 - 财政年份:2022
- 资助金额:
$ 25.78万 - 项目类别:
Research Grant