2022BBSRC-NSF/BIO: Self-replicating synthetic cells programmed by RNA

2022BBSRC-NSF/BIO:由RNA编程的自我复制合成细胞

基本信息

  • 批准号:
    BB/Y000196/1
  • 负责人:
  • 金额:
    $ 56.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

For as long as us humans have been aware that there is a clear difference between living and inanimate matter, we have been trying to answer a fundamental question: what makes something alive?This question has many possible answers, often at odds with each other, but most definitions of life agree on one point: Life should be able to self-replicate. Cell replication indeed underpins some of the most fundamental characteristics of life-forms, such as their ability to evolve, grow, morph, and adapt to their environment. Having noted how central self-replication is to life, another question naturally emerges: is it possible to build from scratch something that can replicate itself, like a living cell?Surely, if we could, it would be the first step towards creating new living things from inanimate matter, which would help us understand the principles that may have led to life emerging on planet earth in the first place, and hold dramatic technological potential.Thanks to an international team of UK and US scientists, combining expertise in nanotechnology, molecular biology, biophysics, and computational science, we will address this fundamental question, attempting to construct synthetic devices that mimic all critical steps of the replication cycle of biological cells: 1) replication of the genetic material, 2) segregation of the genetic material in different parts of the cell, 3) growth of the cell and 4) its division in two offspring cells.Many researchers have, over the years, worked on this problem, and succeeded in building synthetic systems capable of competing some of these individual steps. However, achieving all of them with the same system remains difficult. One key hurdle is that it is very challenging with synthetic systems to couple the replication of the genetic material with the growth and division of the enclosure that contains it, so that one step triggers the other.Our approach solves this problem by re-thinking the role of nucleic acids. In living cells, nucleic acids are predominantly information carriers, with DNA serving as the long-term storage of genetic information and RNA as a substrate to temporarily hold this information while it is used to build proteins. The latter, alongside few other macromolecules (themselves synthesised by protein-based machinery), constitute the main structural elements of the cell.In our self-replicating synthetic cells, however, nucleic acids (DNA and RNA) will play BOTH genetic AND structural roles. Our "synthetic cells" will be made primarily out of synthetic RNA nanostructures produced from a DNA genetic code. The RNA nanostructures will be designed to form cell-like devices capable of growing and dividing, as more RNA is produced from DNA, hence establishing a strong connection between genetic and structural replication, which was missing in previous attempts.By building these nucleic-acid-based, self-replicating synthetic cells, we will not only be able to gauge our ability to imitate life forms and answer questions relative to the origin of life, but we will also pave the way to game-changing technological applications. Synthetic cells constructed from the "bottom-up" are indeed regarded as potentially very valuable in diagnostics and therapeutics, whereby these programmable devices could operate in the body, recognise the presence of a disease, and efficiently tackle it by locally producing and releasing therapeutic payloads. The ability to self-replicate (in a controlled and safe manner) would be crucial for extending the lifespan of the devices, and thus the efficacy of their therapeutic action to the point that it could rival that of cutting-edge therapies based on reprogrammed biological cells.
自从我们人类意识到有生命和无生命的物质之间有明显的区别以来,我们就一直在试图回答一个基本问题:是什么让东西有生命?这个问题有很多可能的答案,往往彼此矛盾,但大多数生命的定义都同意一点:生命应该能够自我复制。细胞复制确实支撑着生命形式的一些最基本的特征,比如它们进化、生长、变形和适应环境的能力。注意到自我复制对生命的重要性之后,另一个问题自然就出现了:有没有可能从零开始制造出能够自我复制的东西,比如活细胞?当然,如果我们能做到,这将是从无生命的物质中创造出新的生物的第一步,这将有助于我们理解地球上最初可能导致生命出现的原理,并具有巨大的技术潜力。感谢一个由英国和美国科学家组成的国际团队,结合纳米技术、分子生物学、生物物理学和计算科学的专业知识,我们将解决这个基本问题,试图构建模拟生物细胞复制周期所有关键步骤的合成设备:1)遗传物质的复制,2)细胞不同部分遗传物质的分离,3)细胞的生长和4)它在两个后代细胞中的分裂。多年来,许多研究人员一直在研究这个问题,并成功地构建了能够与这些单独步骤竞争的合成系统。然而,用同一个系统实现所有这些目标仍然很困难。一个关键的障碍是,对于合成系统来说,将遗传物质的复制与包含它的外壳的生长和分裂结合起来是非常具有挑战性的,因此一步触发另一步。我们的方法通过重新思考核酸的作用来解决这个问题。在活细胞中,核酸主要是信息载体,DNA作为遗传信息的长期存储,RNA作为底物在用于构建蛋白质时暂时保存这些信息。后者与少数其他大分子(它们本身由基于蛋白质的机器合成)一起构成细胞的主要结构元素。然而,在我们自我复制的合成细胞中,核酸(DNA和RNA)将同时扮演遗传和结构的角色。我们的“合成细胞”将主要由由DNA遗传密码产生的合成RNA纳米结构制成。随着更多的RNA从DNA中产生,RNA纳米结构将被设计成能够生长和分裂的细胞状装置,从而在遗传和结构复制之间建立起牢固的联系,这在以前的尝试中是缺失的。通过构建这些基于核酸的、自我复制的合成细胞,我们不仅能够衡量我们模仿生命形式的能力,并回答与生命起源有关的问题,而且我们还将为改变游戏规则的技术应用铺平道路。从“自下而上”构建的合成细胞确实被认为在诊断和治疗方面具有潜在的非常宝贵的价值,这些可编程设备可以在体内运行,识别疾病的存在,并通过局部产生和释放治疗有效载荷来有效地解决它。自我复制的能力(以可控和安全的方式)对于延长设备的使用寿命至关重要,因此它们的治疗效果可以与基于重编程生物细胞的尖端疗法相媲美。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenzo Di Michele其他文献

Lorenzo Di Michele的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenzo Di Michele', 18)}}的其他基金

EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizo​​ns 2021:人工细胞和生物细胞之间的工程合成突触。
  • 批准号:
    EP/X018903/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
Japan_IPAP - Top-down meets bottom-up: Designer membrane-less organelles from condensation of synthetic RNA nanostructure
Japan_IPAP - 自上而下与自下而上相遇:通过合成 RNA 纳米结构的浓缩设计无膜细胞器
  • 批准号:
    BB/X012557/1
  • 财政年份:
    2023
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
A programmable, cell-agnostic DNA nano-technology platform for CRISPR gene editing
用于 CRISPR 基因编辑的可编程、与细胞无关的 DNA 纳米技术平台
  • 批准号:
    EP/V048058/1
  • 财政年份:
    2021
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
    31981220281
  • 批准年份:
    2019
  • 资助金额:
    2.3 万元
  • 项目类别:
    国际(地区)合作与交流项目
参加中美(NSFC-NSF)生物多样性项目评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
    81981220037
  • 批准年份:
    2019
  • 资助金额:
    2.1 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    2.6 万元
  • 项目类别:
    国际(地区)合作与交流项目
中美(NSFC-NSF)EEID联合评审会
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    1.2 万元
  • 项目类别:
    国际(地区)合作与交流项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
  • 批准号:
    2335999
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
NSF Postdoctoral Fellowship in Biology: Human Domestication of Maize as Bio-cultural Coevolution
美国国家科学基金会生物学博士后奖学金:人类驯化玉米作为生物文化协同进化
  • 批准号:
    2305694
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Fellowship Award
2022BBSRC-NSF/BIO Generating New Network Analysis Tools for Elucidating the Functional Logic of 3D Vision Circuits of the Drosophila Brain
2022BBSRC-NSF/BIO 生成新的网络分析工具来阐明果蝇大脑 3D 视觉电路的功能逻辑
  • 批准号:
    BB/Y000234/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
22BBSRC-NSF/BIO: A synthetic pyrenoid to guide the engineering of enhanced crops
22BBSRC-NSF/BIO:指导改良作物工程的合成核糖体
  • 批准号:
    BB/Y000323/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
22-BBSRC/NSF-BIO Building synthetic regulatory units to understand the complexity of mammalian gene expression
22-BBSRC/NSF-BIO 构建合成调控单元以了解哺乳动物基因表达的复杂性
  • 批准号:
    BB/Y008898/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Standard Grant
20-BBSRC/NSF-BIO Regulatory control of innate immune response in marine invertebrates
20-BBSRC/NSF-BIO 海洋无脊椎动物先天免疫反应的调节控制
  • 批准号:
    BB/W017865/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.15万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了