Fast, efficient and reliable: digital qualification of ultrasonic inspection for safety-critical components
快速、高效、可靠:安全关键部件超声波检测的数字化鉴定
基本信息
- 批准号:EP/X02427X/1
- 负责人:
- 金额:$ 128.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In high-value manufacturing sectors such as aerospace and nuclear, safety is paramount. For this reason, the design and qualification of inspection for safety-critical components is a crucial part of the overall development cycle. However, current practice makes extensive use of experimental trials on physical components and mock-ups, into which artificial defects, limited to small numbers of specific test cases, must be introduced to demonstrate that they can be detected and characterised. Inspection qualification is therefore extremely time-consuming and costly (with some full mock-ups of defect-containing components costing £millions), and at odds with the general move toward agile, small-batch, bespoke, digitally-enabled manufacturing. We propose replacing the use of these expensive, wasteful, physical test specimens with digital alternatives, to improve manufacturing efficiency. Delivering this will require high-speed, representative, realistic numerical simulation capabilities to be developed, in combination with solutions to reliably sample and interpolate across the high dimensionality of the parametric space. This virtual testing capability will enable the inspection of a high value component to be designed, optimised, and qualified before a single part has been manufactured. It will provide the basis of a simulation tool for operator training and be able to generate data at the scale and fidelity needed to train future machine learning solutions for inspection automation. Ultrasonic array inspection will be the demonstrator case as this is the most widely used method for assessing the internal integrity of safety-critical components, both at manufacture and in service. To achieve the goal requires validated tools to synthesise authentic inspection data at scale and a methodology to robustly explore the vast parameter space of possible defects to determine inspection performance. Our idea to achieve this ambitious vision is to approach the problem from two complimentary directions.Bottom-up: we will make the direct numerical simulation of raw data more efficient. Building on previous world-leading research by the applicants, we will show how numerical simulation tools can be better exploited to reduce the computational burden by at least one order of magnitude. Top-down: we will make the quantitative characterisation of the multi-dimensional parameter space to qualify inspection performance more efficient. Drawing on our domain knowledge and in extensive discussion with industrial collaborators (Rolls-Royce, EDF, Jacobs, Airbus, and KANDE), we will develop suitable surrogate modelling, sampling, and integration strategies for accurately characterising the parameter space with a small number of high-fidelity numerical simulations.In addressing this problem we will produce a set of tools and techniques that ensure that inspection qualification is reduced in cost and complexity by orders of magnitude, leaving it fit for the future of digital manufacturing.
在航空航天和核能等高价值制造领域,安全至关重要。因此,安全关键部件的设计和检验鉴定是整个开发周期的关键部分。然而,当前的实践广泛使用对物理组件和模型的实验试验,必须在其中引入仅限于少量特定测试用例的人工缺陷,以证明它们可以被检测和表征。因此,检验鉴定极其耗时且成本高昂(一些包含缺陷的组件的完整模型成本高达数百万英镑),并且与敏捷、小批量、定制、数字化制造的总体趋势相悖。我们建议用数字替代品取代这些昂贵、浪费的物理测试样本,以提高制造效率。要实现这一目标,需要开发高速、具有代表性、真实的数值模拟能力,并结合在参数空间的高维度上进行可靠采样和插值的解决方案。这种虚拟测试功能将能够在制造单个零件之前对高价值零件进行设计、优化和鉴定。它将为操作员培训提供模拟工具的基础,并能够生成培训未来检测自动化机器学习解决方案所需的规模和保真度的数据。超声波阵列检测将成为演示案例,因为这是评估安全关键组件在制造和使用中的内部完整性的最广泛使用的方法。为了实现这一目标,需要经过验证的工具来大规模综合真实的检测数据,并需要一种方法来稳健地探索可能缺陷的巨大参数空间,以确定检测性能。我们实现这一宏伟愿景的想法是从两个互补的方向解决问题。自下而上:我们将使原始数据的直接数值模拟更加高效。在申请人之前世界领先的研究的基础上,我们将展示如何更好地利用数值模拟工具来将计算负担减少至少一个数量级。自上而下:我们将对多维参数空间进行定量表征,以更有效地鉴定检测性能。凭借我们的领域知识以及与工业合作者(劳斯莱斯、EDF、Jacobs、空客和 KANDE)的广泛讨论,我们将开发合适的替代建模、采样和集成策略,以通过少量高保真数值模拟准确表征参数空间。在解决这个问题时,我们将开发一套工具和技术,确保通过以下方式降低检验资格的成本和复杂性: 数量级,使其适合数字制造的未来。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Huthwaite其他文献
A digital twin-based framework for reliability estimation in ultrasonic guided wave structural health monitoring systems with temperature variations
一种基于数字孪生的超声导波结构健康监测系统在温度变化下的可靠性评估框架
- DOI:
10.1016/j.ymssp.2025.112848 - 发表时间:
2025-07-15 - 期刊:
- 影响因子:8.900
- 作者:
Panpan Xu;Georgios Sarris;Robin Jones;Peter Huthwaite - 通讯作者:
Peter Huthwaite
Assessing accuracy of an efficient analytical-finite element framework for modelling guided wave scattering from corrosion defects in pipes
评估用于模拟管道中腐蚀缺陷导波散射的高效分析有限元框架的准确性
- DOI:
10.1016/j.ndteint.2025.103471 - 发表时间:
2025-12-01 - 期刊:
- 影响因子:4.500
- 作者:
Abdul Mateen Qadri;Peter Huthwaite;Michael Lowe;Thomas Vogt - 通讯作者:
Thomas Vogt
Transfer learning in guided wave testing of pipes
- DOI:
10.1016/j.ymssp.2024.112007 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Mikolaj Mroszczak;Robin E. Jones;Peter Huthwaite;Stefano Mariani - 通讯作者:
Stefano Mariani
How do longitudinal waves propagate transversely?
纵波如何横向传播?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Peter Huthwaite - 通讯作者:
Peter Huthwaite
Peter Huthwaite的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Huthwaite', 18)}}的其他基金
Quantitative non-destructive imaging with limited data
数据有限的定量无损成像
- 批准号:
EP/M020207/1 - 财政年份:2015
- 资助金额:
$ 128.55万 - 项目类别:
Fellowship
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
- 批准号:
EP/Y015886/1 - 财政年份:2024
- 资助金额:
$ 128.55万 - 项目类别:
Fellowship
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
- 批准号:
2310323 - 财政年份:2024
- 资助金额:
$ 128.55万 - 项目类别:
Standard Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 128.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
- 批准号:
EP/X031608/1 - 财政年份:2023
- 资助金额:
$ 128.55万 - 项目类别:
Research Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
- 批准号:
2348281 - 财政年份:2023
- 资助金额:
$ 128.55万 - 项目类别:
Continuing Grant
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
- 批准号:
RGPIN-2019-05071 - 财政年份:2022
- 资助金额:
$ 128.55万 - 项目类别:
Discovery Grants Program - Individual
Efficient and reliable coded distributed computing
高效可靠的编码分布式计算
- 批准号:
570977-2021 - 财政年份:2022
- 资助金额:
$ 128.55万 - 项目类别:
Alliance Grants
Reliable and efficient real-time tools for collecting and analyzing large health datasets
用于收集和分析大型健康数据集的可靠且高效的实时工具
- 批准号:
RGPIN-2017-05377 - 财政年份:2022
- 资助金额:
$ 128.55万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Efficient Estimation of the Economic Value of medical Research (REEEVR)
可靠、高效的医学研究经济价值估算 (REEEVR)
- 批准号:
MR/W029855/1 - 财政年份:2022
- 资助金额:
$ 128.55万 - 项目类别:
Research Grant
PFI-TT: Development of an Automated Cell Culturing Platform for Highly Efficient and Reliable Drug Testing in Physiologically Representative Disease Models
PFI-TT:开发自动化细胞培养平台,在生理代表性疾病模型中进行高效可靠的药物测试
- 批准号:
2141029 - 财政年份:2022
- 资助金额:
$ 128.55万 - 项目类别:
Standard Grant














{{item.name}}会员




