RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems

RITA:AIoT 系统边缘计算中可靠、高效的任务管理

基本信息

  • 批准号:
    EP/Y015886/1
  • 负责人:
  • 金额:
    $ 25.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence of Things (AIoT) has been attracting significant research attention worldwide owing to its great potential in boosting the promising AI-based innovations to support emerging smart applications, such as intelligent manufacturing, autonomous driving, and smart city. To handle massive volumes of data and process computation-intensive AI algorithms, edge computing has emerged as a key building block to empower AIoT. The lifecycle of computational task management in AIoT consists of task offloading decision, task transmission, and task execution. To tackle these challenges, this project aims to create a suite of novel theories and approaches of task management towards achieving reliable and efficient edge computing for AIoT systems. To this end, I will firstly develop an original parallelism- and dependency- aware offloading decision scheme to find the fine-grained tasks with maximised parallelism and minimised dependency, such that more effective task workloads can be offloaded with less energy consumption. I will then propose a novel task transfer protocol that adopts a lightweight cross-access link prediction scheme based on the noise patterns. Finally, an opportunistic task allocation scheme will be designed, which allocates each task to multiple opportunistic and redundant edge servers for achieving the minimum delay for task execution. A holistic AIoT testbed and open-access software will be implemented for performance evaluation and demonstration of the proposed task management approaches. The research outcomes will contribute to Europe's competitiveness and growth in the promising AIoT area. Well-planned training activities will equip me with new skills and competences to enhance my creative and innovative potential and promote my career prospects. Open science practices as well as planned communication, dissemination, and exploitation activities will reach out to society at large and make the research results visible to citizens.
人工智能物联网(AIoT)一直吸引着全球范围内的研究关注,因为它在推动基于人工智能的创新以支持新兴智能应用(如智能制造,自动驾驶和智能城市)方面具有巨大的潜力。为了处理大量数据和处理计算密集型AI算法,边缘计算已成为增强AIoT的关键构建块。AIoT中计算任务管理的生命周期包括任务卸载决策、任务传输和任务执行。为了应对这些挑战,该项目旨在创建一套新颖的任务管理理论和方法,以实现AIoT系统的可靠和高效的边缘计算。为此,我将首先开发一个原始的并行性和依赖性感知的卸载决策方案,以找到具有最大化并行性和最小化依赖性的细粒度任务,从而可以以更少的能耗卸载更有效的任务工作负载。然后,我将提出一种新的任务传输协议,采用轻量级的交叉访问链路预测方案的基础上的噪声模式。最后,设计了一种机会任务分配方案,将每个任务分配给多个机会冗余边缘服务器,以实现任务执行的最小延迟。将实施全面的AIoT测试平台和开放访问软件,以评估和演示拟议的任务管理方法。研究成果将有助于欧洲在前景广阔的AIoT领域的竞争力和增长。精心策划的培训活动将使我掌握新的技能和能力,以提高我的创造力和创新潜力,并促进我的职业前景。开放的科学实践以及有计划的交流、传播和利用活动将覆盖整个社会,并使研究成果对公民可见。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geyong Min其他文献

A Light-Weight Statistical Latency Measurement Platform at Scale
轻量级大规模统计延迟测量平台
On the Study of Sustainability and Outage of SWIPT-Enabled Wireless Communications
基于SWIPT的无线通信的可持续性和中断研究
Performance analysis of an integrated scheduling scheme in the presence of bursty MMPP traffic
存在突发 MMPP 流量时集成调度方案的性能分析
  • DOI:
    10.1016/j.jss.2010.08.027
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Lei Liu;Xiaolong Jin;Geyong Min
  • 通讯作者:
    Geyong Min
Cooperative Edge Caching Based on Temporal Convolutional Networks
基于时间卷积网络的协作边缘缓存
SDVD: Self-supervised dual-view modeling of user and cascade dynamics for information diffusion prediction
  • DOI:
    10.1016/j.knosys.2025.114005
  • 发表时间:
    2025-09-27
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Haoyu Xiong;Jiaxing Shang;Fei Hao;Dajiang Liu;Geyong Min
  • 通讯作者:
    Geyong Min

Geyong Min的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geyong Min', 18)}}的其他基金

VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship
KEEN - Knowledge-driven Explainable Misinformation Detection for Trustworthy Computational Social Systems
KEEN - 知识驱动的可解释错误信息检测,用于可信赖的计算社会系统
  • 批准号:
    EP/Y015894/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship
ASCENT: Autonomous Vehicular Edge Computing and Networking for Intelligent Transportation
ASCENT:智能交通的自主车辆边缘计算和网络
  • 批准号:
    EP/X038866/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Proposal for Support of the Keynote Speakers for the 10th IEEE International Conference on Computer and Information Technology (CIT-2010)
支持第十届 IEEE 计算机与信息技术国际会议 (CIT-2010) 主讲嘉宾的提案
  • 批准号:
    EP/I011676/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant

相似海外基金

STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
  • 批准号:
    2310323
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fast, efficient and reliable: digital qualification of ultrasonic inspection for safety-critical components
快速、高效、可靠:安全关键部件超声波检测的数字化鉴定
  • 批准号:
    EP/X02427X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Towards fault-tolerant, reliable, efficient, and economical DC-DC conversion for DC grid (FREE-DC)
面向直流电网实现容错、可靠、高效且经济的 DC-DC 转换 (FREE-DC)
  • 批准号:
    EP/X031608/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Reliable and Explainable Recommender Systems for Efficient Software Development
用于高效软件开发的可靠且可解释的推荐系统
  • 批准号:
    RGPIN-2019-05071
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient and reliable coded distributed computing
高效可靠的编码分布式计算
  • 批准号:
    570977-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Alliance Grants
PFI-TT: Development of an Automated Cell Culturing Platform for Highly Efficient and Reliable Drug Testing in Physiologically Representative Disease Models
PFI-TT:开发自动化细胞培养平台,在生理代表性疾病模型中进行高效可靠的药物测试
  • 批准号:
    2141029
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Reliable and Efficient Estimation of the Economic Value of medical Research (REEEVR)
可靠、高效的医学研究经济价值估算 (REEEVR)
  • 批准号:
    MR/W029855/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Research Grant
Reliable and efficient real-time tools for collecting and analyzing large health datasets
用于收集和分析大型健康数据集的可靠且高效的实时工具
  • 批准号:
    RGPIN-2017-05377
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了