A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
基本信息
- 批准号:EP/X026973/1
- 负责人:
- 金额:$ 764.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Experiments using modern laser technologies and new light sources look at quantum systems undergoing dynamic change to understand molecular function and answer fundamental questions relevant to chemistry, materials and quantum technologies. Typical questions are: How can molecules be engineered for maximum efficiency during energy harvesting, UV protection or photocatalysis? What happens when strong and rapidly changing laser fields act on electrons in atoms and molecules? How fast do qubits lose information due to interactions with the environment? Will an array of interacting qubits in future quantum computers remain stable over long time-scales? Interpreting time-resolved experiments that aim to answer these questions requires Quantum Dynamics (QD) simulations, the theory of quantum motion. QD is on the cusp of being able to make quantitative predictions about large molecular systems, solving the time-dependent Schrödinger equation in a way that will help unravel the complicated signals from state-of-the-art experiments and provide mechanistic details of quantum processes. However, important methodological challenges remain, such as computational expense and accurate prediction of experimental observables, requiring a concerted team-effort. Addressing these will greatly benefit the wider experimental and computational QD communities.In this programme grant we will develop transformative new QD simulation strategies that will uniquely deliver impact and insight for real-world applications across a range of technological and biological domains. The key to our vision is the development, dissemination, and wide adaptation of powerful new universal software for QD simulations, building on our collective work on QD methods exploiting trajectory-guided basis functions. Present capability is, however, held back by the typically fragmented approach to academic software development. This lack of unification makes it difficult to use ideas from one group to improve the methods of another group, and even the simple comparison of QD simulation methods is non-trivial. Here, we will combine a wide range of existing methods into a unified code suitable for use by both computational and experimental researchers to model fundamental photo-excited molecular behaviour and interpret state-of-the-art experiments. Importantly we will develop and implement new mathematical and numerical ideas within this software suite, with the explicit objective of pushing the system-size and time-scale limits beyond what is currently accessible within "standard" QD simulations. Our unified code will lead to powerful and reliable QD methods, simultaneously enabling easy adoption by non-specialists; for the first time, scientists developing and using QD simulations will be able to access, develop and deploy a common software framework, removing many of the inter- and intra-community barriers that exist within the current niche software set-ups across the QD domain. The transformative impact of method development and code integration is powerfully illustrated by electronic structure and classical molecular dynamics packages, used routinely by thousands of researchers around the world and recognised by several Nobel Prizes in the last few decades. Our programme grant aims to deliver a similar step-change by improving accessibility for QD simulations. Success in our programme grant would be the demonstrated increase in adoption of advanced QD simulations across a broad range of end-user communities (e.g. spectroscopy, materials scientists, molecular designers). Furthermore, by supporting a large yet integrated cohort of early-career researchers, this programme grant will provide an enormous acceleration to developments in QD, positioning the UK as a global leader in this domain as we move from the era of classical computation and simulation into the quantum era of the coming decades.
使用现代激光技术和新光源的实验,请研究经历动态变化的量子系统,以了解分子功能并回答与化学,材料和量子技术有关的基本问题。典型的问题是:如何在能量收集,紫外线保护或光催化期间对分子进行设计以最大程度的效率?当强烈而快速变化的激光场对原子和分子中的电子作用时会发生什么?由于与环境的相互作用,量子位丢失了信息的速度?将来的量子计算机中的一系列相互作用的量子位会在长时间尺度上保持稳定吗?解释旨在回答这些问题的时间分辨实验需要量子动力学(QD)模拟,即量子运动理论。 QD正处于能够对大分子系统做出定量预测的尖端,以一种将时间依赖性的Schrödinger方程来解决的方式,可以帮助从最新的实验中解散复杂的信号,并提供量子过程的机械细节。但是,仍然存在重要的方法论挑战,例如计算费用和对实验观察的准确预测,需要一致的团队合作。解决这些问题将极大地受益于更广泛的实验和计算QD社区。在这项计划赠款中,我们将制定新的QD仿真策略,这些策略将唯一地为一系列技术和生物域的现实世界应用提供影响和见解。我们愿景的关键是,用于QD模拟的强大新通用软件的开发,传播和广泛适应,这是基于我们利用轨迹引导基础功能的QD方法的集体工作。然而,当前功能被通常分散的学术软件开发方法所阻碍。这种缺乏统一使得很难使用一个组的想法来改善另一组的方法,甚至QD仿真方法的简单比较也不平淡。在这里,我们将多种现有方法结合到适合使用计算和实验研究人员使用的统一代码中,以模拟基本的光启用分子行为并解释最新的实验。重要的是,我们将在此软件套件内开发和实施新的数学和数值思想,并明确目标将系统大小和时间尺度限制推到“标准” QD仿真中当前可访问的范围之外。我们的统一代码将导致强大而可靠的QD方法,仅使非专家的轻松采用;开发和使用QD模拟的科学家将能够访问,开发和部署常见的软件框架,从而消除当前QD域中当前利基软件软件设置中存在的许多间隙和内部障碍。方法开发和代码集成的变革性影响通过电子结构和经典的分子动力包进行了强有力的说明,这些动态套件通常由世界各地的成千上万的研究人员常规地使用,并在过去几十年中被诺贝尔奖所认可。我们的计划赠款旨在通过改善QD模拟的可访问性来实现类似的步骤变化。我们计划赠款的成功将证明在广泛的最终用户社区(例如光谱,材料科学家,分子设计师)中采用高级QD模拟的采用率会增加。此外,通过支持大量但综合的早期研究人员研究人员,该计划赠款将为QD的发展提供巨大的加速,将英国定位为我们从古典计算和模拟时代转变为未来几十年的量子时代的全球领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Worth其他文献
Graham Worth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Worth', 18)}}的其他基金
Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
- 批准号:
EP/T006560/1 - 财政年份:2020
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Rational design of photoactive molecules using "black box" quantum dynamics simulations
使用“黑匣子”量子动力学模拟合理设计光活性分子
- 批准号:
EP/S028781/1 - 财政年份:2019
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
- 批准号:
EP/K037943/2 - 财政年份:2016
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
- 批准号:
EP/L005697/2 - 财政年份:2016
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
- 批准号:
EP/M022544/2 - 财政年份:2016
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
- 批准号:
EP/M022544/1 - 财政年份:2015
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
- 批准号:
EP/L005697/1 - 财政年份:2014
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
- 批准号:
EP/K037943/1 - 财政年份:2013
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Wavepacket dynamics for the future: A general purpose HPC-compliant program.
面向未来的 Wavepacket 动力学:通用 HPC 兼容程序。
- 批准号:
EP/G055270/1 - 财政年份:2009
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
Stark shifting the barrier to reaction: Control through using a strong laser field to shape the potential energy surfaces
彻底改变反应障碍:通过使用强激光场塑造势能面进行控制
- 批准号:
EP/G014124/1 - 财政年份:2008
- 资助金额:
$ 764.18万 - 项目类别:
Research Grant
相似国自然基金
出口转型视角下中国石墨产业全球价值链“低端锁定”破解策略研究
- 批准号:42301342
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
解决马尾松基因组选择预测准确率低的瓶颈问题的有效标记开发方法与策略探讨
- 批准号:32171825
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
解决马尾松基因组选择预测准确率低的瓶颈问题的有效标记开发方法与策略探讨
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于质量问题解决混杂数据的因果知识模型构建及因果分析方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
利用“反作用力”及Tikhonov正则机制解决非凸非光滑优化问题的神经网络方法研究
- 批准号:61862004
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Application of the Telemedicine for Reach, Education, Access, and Treatment delivery model to engage emerging adults in Diabetes Self-Management Education and Support (TREAT-ED)
应用远程医疗覆盖、教育、获取和治疗提供模式,让新兴成年人参与糖尿病自我管理教育和支持 (TREAT-ED)
- 批准号:
10651947 - 财政年份:2023
- 资助金额:
$ 764.18万 - 项目类别:
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
- 批准号:
10583917 - 财政年份:2023
- 资助金额:
$ 764.18万 - 项目类别:
2023 RNA Nanotechnology Gordon Research Conference and Seminar
2023年RNA纳米技术戈登研究会议暨研讨会
- 批准号:
10598881 - 财政年份:2023
- 资助金额:
$ 764.18万 - 项目类别:
2023 Assisted Circulation Gordon Research Conference and Seminar
2023年辅助循环戈登研究会议暨研讨会
- 批准号:
10682886 - 财政年份:2023
- 资助金额:
$ 764.18万 - 项目类别:
Enhancing HIV prevention and reducing alcohol use among people receiving STI care in Malawi: An HIV status neutral approach
在马拉维接受性传播感染护理的人群中加强艾滋病毒预防并减少饮酒:艾滋病毒状况中立的方法
- 批准号:
10696585 - 财政年份:2023
- 资助金额:
$ 764.18万 - 项目类别: