A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)

使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)

基本信息

  • 批准号:
    EP/X026973/1
  • 负责人:
  • 金额:
    $ 764.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Experiments using modern laser technologies and new light sources look at quantum systems undergoing dynamic change to understand molecular function and answer fundamental questions relevant to chemistry, materials and quantum technologies. Typical questions are: How can molecules be engineered for maximum efficiency during energy harvesting, UV protection or photocatalysis? What happens when strong and rapidly changing laser fields act on electrons in atoms and molecules? How fast do qubits lose information due to interactions with the environment? Will an array of interacting qubits in future quantum computers remain stable over long time-scales? Interpreting time-resolved experiments that aim to answer these questions requires Quantum Dynamics (QD) simulations, the theory of quantum motion. QD is on the cusp of being able to make quantitative predictions about large molecular systems, solving the time-dependent Schrödinger equation in a way that will help unravel the complicated signals from state-of-the-art experiments and provide mechanistic details of quantum processes. However, important methodological challenges remain, such as computational expense and accurate prediction of experimental observables, requiring a concerted team-effort. Addressing these will greatly benefit the wider experimental and computational QD communities.In this programme grant we will develop transformative new QD simulation strategies that will uniquely deliver impact and insight for real-world applications across a range of technological and biological domains. The key to our vision is the development, dissemination, and wide adaptation of powerful new universal software for QD simulations, building on our collective work on QD methods exploiting trajectory-guided basis functions. Present capability is, however, held back by the typically fragmented approach to academic software development. This lack of unification makes it difficult to use ideas from one group to improve the methods of another group, and even the simple comparison of QD simulation methods is non-trivial. Here, we will combine a wide range of existing methods into a unified code suitable for use by both computational and experimental researchers to model fundamental photo-excited molecular behaviour and interpret state-of-the-art experiments. Importantly we will develop and implement new mathematical and numerical ideas within this software suite, with the explicit objective of pushing the system-size and time-scale limits beyond what is currently accessible within "standard" QD simulations. Our unified code will lead to powerful and reliable QD methods, simultaneously enabling easy adoption by non-specialists; for the first time, scientists developing and using QD simulations will be able to access, develop and deploy a common software framework, removing many of the inter- and intra-community barriers that exist within the current niche software set-ups across the QD domain. The transformative impact of method development and code integration is powerfully illustrated by electronic structure and classical molecular dynamics packages, used routinely by thousands of researchers around the world and recognised by several Nobel Prizes in the last few decades. Our programme grant aims to deliver a similar step-change by improving accessibility for QD simulations. Success in our programme grant would be the demonstrated increase in adoption of advanced QD simulations across a broad range of end-user communities (e.g. spectroscopy, materials scientists, molecular designers). Furthermore, by supporting a large yet integrated cohort of early-career researchers, this programme grant will provide an enormous acceleration to developments in QD, positioning the UK as a global leader in this domain as we move from the era of classical computation and simulation into the quantum era of the coming decades.
使用现代激光技术和新光源的实验着眼于经历动态变化的量子系统,以了解分子功能并回答与化学,材料和量子技术相关的基本问题。典型的问题是:如何在能量收集、紫外线防护或紫外线防护过程中设计分子以实现最大效率?当强而快速变化的激光场作用于原子和分子中的电子时,会发生什么?由于与环境的相互作用,量子比特丢失信息的速度有多快?在未来的量子计算机中,相互作用的量子比特阵列会在很长的时间尺度上保持稳定吗?解释旨在回答这些问题的时间分辨实验需要量子动力学(QD)模拟,即量子运动理论。QD正处于能够对大型分子系统进行定量预测的尖端,以一种有助于解开最先进实验的复杂信号并提供量子过程的机械细节的方式解决与时间相关的薛定谔方程。然而,重要的方法挑战仍然存在,如计算费用和准确预测的实验观测,需要协调一致的团队努力。解决这些问题将极大地有利于更广泛的实验和计算量子点社区。在这个计划补助金,我们将开发变革性的新量子点模拟策略,将独特地提供跨一系列技术和生物领域的现实世界的应用的影响和见解。我们的愿景的关键是开发,传播和广泛适应强大的新的通用软件的量子点模拟,建立在我们的集体工作的量子点方法利用随机制导的基础函数。然而,目前的能力是由学术软件开发的典型的零散的方法。这种缺乏统一性使得很难使用一个群体的想法来改进另一个群体的方法,甚至QD模拟方法的简单比较也是不平凡的。在这里,我们将联合收割机广泛的现有方法结合成一个统一的代码,适用于计算和实验研究人员使用的基本光激发的分子行为模型和解释国家的最先进的实验。重要的是,我们将在这个软件套件中开发和实现新的数学和数值思想,明确的目标是将系统大小和时间尺度限制推到目前“标准”QD模拟中所能达到的范围之外。我们的统一代码将导致强大而可靠的QD方法,同时使非专业人员能够轻松采用;开发和使用QD模拟的科学家将首次能够访问,开发和部署通用软件框架,消除QD领域当前利基软件设置中存在的许多社区间和社区内障碍。电子结构和经典分子动力学软件包有力地说明了方法开发和代码集成的变革性影响,这些软件包被世界各地数千名研究人员常规使用,并在过去几十年中获得了多项诺贝尔奖。我们的计划赠款旨在通过提高QD模拟的可访问性来实现类似的逐步变化。我们的计划资助的成功将是在广泛的最终用户社区(例如光谱学,材料科学家,分子设计师)中采用先进的量子点模拟的增加。此外,通过支持大量但综合的早期职业研究人员,该计划拨款将为QD的发展提供巨大的加速,使英国成为该领域的全球领导者,因为我们从经典计算和模拟时代进入未来几十年的量子时代。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graham Worth其他文献

Graham Worth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graham Worth', 18)}}的其他基金

Controlling photophysics and photochemistry via quantum superpositions of electronic states: towards attochemistry
通过电子态的量子叠加控制光物理和光化学:走向原子化学
  • 批准号:
    EP/T006560/1
  • 财政年份:
    2020
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Rational design of photoactive molecules using "black box" quantum dynamics simulations
使用“黑匣子”量子动力学模拟合理设计光活性分子
  • 批准号:
    EP/S028781/1
  • 财政年份:
    2019
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
  • 批准号:
    EP/K037943/2
  • 财政年份:
    2016
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
  • 批准号:
    EP/L005697/2
  • 财政年份:
    2016
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
  • 批准号:
    EP/M022544/2
  • 财政年份:
    2016
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
CCPQ: Quantum Dynamics in Atomic, Molecular and Optical Physics
CCPQ:原子、分子和光学物理中的量子动力学
  • 批准号:
    EP/M022544/1
  • 财政年份:
    2015
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Photoelectron spectroscopy in a liquid microjet: unravelling the excited state dynamics of photoactive proteins
液体微射流中的光电子能谱:揭示光活性蛋白质的激发态动力学
  • 批准号:
    EP/L005697/1
  • 财政年份:
    2014
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Developing the MCTDH Quantum Dynamics Code: Accurate Direct Dynamics of Non-Adiabatic Phenomena
开发 MCTDH 量子动力学代码:非绝热现象的精确直接动力学
  • 批准号:
    EP/K037943/1
  • 财政年份:
    2013
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Wavepacket dynamics for the future: A general purpose HPC-compliant program.
面向未来的 Wavepacket 动力学:通用 HPC 兼容程序。
  • 批准号:
    EP/G055270/1
  • 财政年份:
    2009
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Stark shifting the barrier to reaction: Control through using a strong laser field to shape the potential energy surfaces
彻底改变反应障碍:通过使用强激光场塑造势能面进行控制
  • 批准号:
    EP/G014124/1
  • 财政年份:
    2008
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

The support program of worring, talking and problem solving for children with autism :approach through study science.
自闭症儿童的担忧、交谈和解决问题的支持计划:通过学习科学的方法。
  • 批准号:
    23K02898
  • 财政年份:
    2023
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2022
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Discovery Grants Program - Individual
Growing Tree Shapes: A New Perspective and Approach to Solving Global Problems
种植树形:解决全球问题的新视角和新方法
  • 批准号:
    547581-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An Integrated Real-Time Approach to the Development of Human Problem Solving
开发人类解决问题的综合实时方法
  • 批准号:
    ES/W009242/1
  • 财政年份:
    2022
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
Growing Tree Shapes: A New Perspective and Approach to Solving Global Problems
种植树形:解决全球问题的新视角和新方法
  • 批准号:
    547581-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2021
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2020
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Discovery Grants Program - Individual
Growing Tree Shapes: A New Perspective and Approach to Solving Global Problems
种植树形:解决全球问题的新视角和新方法
  • 批准号:
    547581-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Providing the 30% recycled content for food packing (PFP): An integrated stakeholder approach to solving 'hard to recycle' plastic packaging
提供%20the%2030%%20recycled%20content%20for%20food%20packing%20(PFP):%20An%20integrated%20stakeholder%20approach%20to%20solving%20hard%20to%20recycle%20 Plastic%20packaging
  • 批准号:
    NE/V010751/1
  • 财政年份:
    2020
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Research Grant
A chemist's approach to solving biological problems
化学家解决生物学问题的方法
  • 批准号:
    2417184
  • 财政年份:
    2020
  • 资助金额:
    $ 764.18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了