Modelling the Mixing and Erosion at the Head of Gravity Currents

模拟重力流头部的混合和侵蚀

基本信息

  • 批准号:
    EP/X028577/1
  • 负责人:
  • 金额:
    $ 41.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Fluid movement driven by a density difference is very common. When a freezer is opened, or a window on a winter's day (a ventilation flow), you may have noticed that the dense, cold air rushes across your feet. This effect can be felt even if you are on the other side of the room, the cold air warming a little as it mixes with the warmer air above, but remaining sufficiently cool and distinct as it flows like a flood across the floor.These are part of a very broad family of fluid flows present across our homes, industries, and the wider environment, known as gravity-currents. Ventilation flows are important to understand for the spread of pathogens and disease, and cold-fronts are essentially the same but on the scale of 100-1000km. In industry, accidental spills of hazardous gas must be planned for, and suitable defences put in place. A very dangerous subset of gravity-currents are particle-driven currents, the suspended particle load providing the driving density and facilitating immense destructive power. For example, powder-snow avalanches are a hazard in mountainous regions, easily burying people and buildings. Pyroclastic density currents, searing hot clouds of ash released by volcanos and flowing out across the ground, famously buried Pompeii, leaving a city of people entombed in volcanic rock. Massive submarine turbidity-currents, >1000km long and moving at up to 10m/s, carry nutrients and carbon into the deep ocean, and have destroyed numerous cables and pipes carrying internet data or energy. Smaller (though still substantial) turbidity-currents will pose an increasing hazard to the UK as we develop deep-marine wind power, which must be connected back to shore by cables. The feasibility of these and other developments rely on our ability to predict and mitigate natural hazards. The front the current pushes aside the ambient fluid, and it is the dynamics here which determine the rate of advance of the current. In addition, this region is a principal source of mixing, and for some currents it is also a region in which there is intense erosion of the bed. As the current mixes with the fluid around it, it becomes more dilute, and the current becomes bigger while simultaneously having a reduced driving density. Conversely, as it erodes the bed the driving density increases. Thus, the front exerts a very strong control on the advance of the current, and the mixing and erosional processes are a critical part of this. However, to date these processes have not been included in the mathematical models that are designed to predict these currents, which has limited their applicability to flows over short distances so that the mixing does not substantially affect on the overall density. Additionally, the front of the current is the most dangerous part: the same processes that enable the rapid erosion of the bed can facilitate immense destructive power.In this fundamental scientific study, I will develop novel mathematical models that capture the dynamics of the front of a gravity-current, including the mixing and erosional processes. First, experimental work using newly developed techniques will yield data of unprecedented quality for a cool, temperature driven current, measuring the details of the vortices and mixing in both the head of the current and throughout. Additional experiments will focus on capturing the details of the erosional processes in sediment-driven currents. Informed by these measurements, I will capture the vital aspects of the dynamics of the head within a new mathematical model, for the first time including the mixing and erosional processes. Finally, the model of the head will be combined with a model for the rest of the current, which I developed previously, to give a complete model that can predict the motion of the current. This urgently required project represents a substantial leap-forward in our understanding and predictive power for this important and dangerous class of flows.
由密度差驱动的流体运动是非常常见的。当冬天打开冰箱或窗户(通风气流)时,你可能已经注意到,稠密、寒冷的空气从你的脚上疾驰而过。即使你在房间的另一边,你也能感觉到这种影响,冷空气与上面的暖空气混合时会略有升温,但当它像洪水一样在地板上流动时,保持足够的凉爽和独特。这些都是在我们的家庭、工业和更广泛的环境中存在的非常广泛的流体家族的一部分,称为重力流。了解通风流动对于病原体和疾病的传播很重要,冷锋基本上是相同的,但规模为100-1000公里。在工业中,必须对危险气体的意外泄漏进行计划,并建立适当的防御措施。重力流的一个非常危险的子集是粒子驱动的电流,悬浮的粒子负载提供了驱动密度,并促进了巨大的破坏性力量。例如,粉雪雪崩在山区是一种危险,很容易掩埋人们和建筑物。火山碎屑密度流,火山释放的灼热的火山灰云,流经地面,著名的掩埋了庞贝,留下了一座城市的人被埋在火山岩中。巨大的海底浑浊洋流长1000公里,移动速度高达10米/S,将营养物质和碳带入深海,并摧毁了大量传输互联网数据或能量的电缆和管道。随着我们开发深海风力发电,较小(尽管仍然很大)的浑浊洋流将对英国构成越来越大的危险,这些风力发电必须通过电缆连接回海岸。这些和其他发展的可行性取决于我们预测和减轻自然灾害的能力。洋流的前沿将周围的流体推到一边,这里的动力学决定了洋流的前进速度。此外,这一区域是混合的主要来源,对于一些洋流来说,它也是海床受到强烈侵蚀的区域。当电流与周围的流体混合时,它变得更加稀薄,电流变得更大,同时驱动密度降低。相反,当它侵蚀床层时,行驶密度增加。因此,锋面对海流的推进起着很强的控制作用,而混合和侵蚀过程是其中的关键部分。然而,到目前为止,这些过程还没有包括在为预测这些洋流而设计的数学模型中,这限制了它们对短距离流动的适用性,因此混合不会对总体密度产生实质性影响。此外,洋流前沿是最危险的部分:使河床快速侵蚀的相同过程也会带来巨大的破坏性力量。在这项基础性的科学研究中,我将开发新的数学模型来捕捉重力流前沿的动态,包括混合和侵蚀过程。首先,使用新开发的技术进行的实验工作将为温度驱动的冷却洋流提供前所未有的高质量数据,测量涡旋的细节并在洋流头部和整个洋流中混合。其他实验将侧重于捕捉沉积物驱动的洋流中侵蚀过程的细节。通过这些测量,我将第一次在一个新的数学模型中捕捉到头部动力学的关键方面,包括混合和侵蚀过程。最后,头部的模型将与我之前开发的其余洋流的模型相结合,得到一个可以预测洋流运动的完整模型。这一迫切需要的项目代表着我们对这类重要而危险的流动的理解和预测能力有了很大的飞跃。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gravity current escape from a topographic depression
重力流从地形洼地逃逸
  • DOI:
    10.1103/physrevfluids.9.014802
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Skevington E
  • 通讯作者:
    Skevington E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Skevington其他文献

Edward Skevington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New measurement of the weak mixing angle
弱混合角的新测量
  • 批准号:
    2908000
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Studentship
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Standard Grant
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Collaborative R&D
Capturing Oceanic Submesoscales, Stirring and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    EP/Y014693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Research Grant
Resonant Acoustic Mixing facility for sustainable chemical manufacturing
用于可持续化学制造的共振声学混合设施
  • 批准号:
    EP/Z53111X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Research Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335928
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multipronged Approach to Investigate how Hydrography and Mixing Shape Productive Fjord Ecosystems in Greenland
合作研究:采用多管齐下的方法来研究水文学和混合如何塑造格陵兰岛富有生产力的峡湾生态系统
  • 批准号:
    2335929
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Standard Grant
Capturing Oceanic Submesoscales, Stirring, and Mixing with Sound and Simulations
通过声音和模拟捕捉海洋亚尺度、搅拌和混合
  • 批准号:
    MR/X035611/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Fellowship
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
  • 批准号:
    2329250
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Standard Grant
CAREER: Mixing and Equidistribution in Number Theory and Geometry
职业:数论和几何中的混合和均匀分布
  • 批准号:
    2337911
  • 财政年份:
    2024
  • 资助金额:
    $ 41.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了