PERMEATION OF POLYMER FLUIDS IN SOILS (POPFS)

聚合物流体在土壤中的渗透 (POPFS)

基本信息

  • 批准号:
    EP/X034305/1
  • 负责人:
  • 金额:
    $ 79.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

When tunnels for railways or deep foundations to high rise buildings are built, the first step is to excavate a large hole in the ground. A key challenge is to prevent the excavated hole from collapsing before inserting the final, permenant structure. One way to do this is to pump a special liquid called a support fluid into the open excavated hole. Currently the fluid that is most often used is a suspension of bentonite clay. When this fluid flows into the soil around an excabayion the clay clogs the pore space in the soil at the open face, forming a layer called a filter cake, which prevents fluid and soil movement, and supports the excavation. A newer technology has emerged that uses fluids that are polymer solutions rather than suspensions of small clay particles. These polymer fluids work in a very different way to the bentonite clay suspensions. It is the high viscosity of the fluid that prevents collapse of the hole; these fluids can keep the excavation supported and safe without the need to form a filter cake. Support systems that use polymer fluids are cheaper and have a lower environmental footprint than systems using bentonite suspensions. However the interaction of the polymer fluids and the soil is more complex than the interaction between the soil and the bentonite suspensions. It is therefore more difficult for engineers designing these support systems to predict exactly how they will work and this has slowed their uptake by the construction industry. Our overall aim is to provide the fundamental science needed to reduce any technical uncertainty and therefore enable wider use of these materials. This will have both environmental and economic benefits.In this project engineers with experience of working with polymer-based fluids in the laboratory and on construction sites will team up with engineers who are experts at studying the detail of fluid flow in porous materials to get a much better understanding of how polymer-fluid based support systems work. Members of this newly formed team have backgrounds in civil engineering, mechanical engineering, and petroleum engineering and are based at Imperial College London (ICL), the University of Cambridge (UoC) and the University of Oxford (Oxf). To deliver the research we will link advanced numerical modelling (at ICL) with detailed experimental measurements (at UoC and Oxf ). The planned research will be divided into 4 work packages (WPs). In WP1, researchers at ICL will simulate flow in the pore space using computer models that are created using high resolution 3D X-ray images of the actual pore space. These models will provide a lot of detailed information, but only small volumes can be considered as they use a lot of computer power. Therefore, in WP2 ICL will use a simpler type of model, called a pore network model, to run larger scale simulations to look at the migration of the polymer front in a model of the soil. In WP3, UoC will use a specially developed laboratory apparatus called a permeameter to study the flow of the polymer fluids in real samples of soils; different types of polymer fluids will be considered. In WP4, Oxf will develop and carry out special 2D flow experiments so that we can see the polymer fluid as it flows through the pores in the soil. We will use the experimental data to confirm the computer models work and the computer models will generate data that can't be measured in the laboratory, such as the flow profiles in the 3D voids and the forces on the soil grains.The key questions we will answer for engineers designing excavations will include: (1) How easy it is for the polymer fluid to move through the pores in the soil (we call this the conductivity of the polymer fluid in the soil)?(2) How much stabilizing pressure is exerted on the soil grains as the very viscous polymer fluid flows into the soil?(3) How do the polymer chains suspended in the fluid interact with the soil grains?
当修建铁路隧道或高层建筑的深地基时,第一步是在地面上挖一个大洞。一个关键的挑战是在插入最终的永久性结构之前防止挖出的洞坍塌。一种方法是将一种叫做支撑液的特殊液体泵入露天挖掘的洞中。目前最常用的液体是膨润土的悬浮液。当这种流体流入挖掘周围的土壤时,粘土堵塞了露天土壤中的孔隙空间,形成一层称为滤饼的物质,它可以防止流体和土壤的运动,并支撑挖掘。一种新的技术已经出现,它使用的是聚合物溶液,而不是小粘土颗粒的悬浮液。这些聚合物流体的工作方式与膨润土粘土悬浮液非常不同。正是流体的高粘度防止了井眼塌陷;这些液体可以保持挖掘的支撑和安全,而不需要形成过滤饼。与使用膨润土悬浮液的支撑系统相比,使用聚合物流体的支撑系统成本更低,对环境的影响也更小。然而,聚合物流体与土壤的相互作用比土与膨润土悬浮液的相互作用更为复杂。因此,设计这些支持系统的工程师很难准确预测它们将如何工作,这也减缓了建筑行业对这些系统的采用。我们的总体目标是提供所需的基础科学,以减少任何技术上的不确定性,从而使这些材料得到更广泛的应用。这将具有环境和经济效益。在这个项目中,具有在实验室和建筑工地使用聚合物基流体经验的工程师将与研究多孔材料中流体流动细节的专家工程师合作,以更好地了解聚合物基流体支撑系统的工作原理。这个新成立的团队的成员拥有土木工程、机械工程和石油工程的背景,他们分别来自伦敦帝国理工学院(ICL)、剑桥大学(UoC)和牛津大学(Oxf)。为了进行研究,我们将把先进的数值模拟(在ICL)与详细的实验测量(在UoC和Oxf)联系起来。计划的研究将分为4个工作包(WPs)。在WP1中,ICL的研究人员将使用计算机模型模拟孔隙空间中的流动,这些模型是由实际孔隙空间的高分辨率3D x射线图像创建的。这些模型将提供大量的详细信息,但只能考虑小体积,因为它们使用大量的计算机功率。因此,在WP2中,ICL将使用一种更简单的模型,称为孔隙网络模型,来运行更大规模的模拟,以观察土壤模型中聚合物前沿的迁移。在WP3中,UoC将使用一种专门开发的实验室设备,称为渗透仪,来研究聚合物流体在真实土壤样品中的流动;将考虑不同类型的聚合物流体。在WP4中,Oxf将开发并开展特殊的二维流动实验,这样我们就可以看到聚合物流体流过土壤孔隙的过程。我们将使用实验数据来确认计算机模型的有效性,计算机模型将生成在实验室中无法测量的数据,例如三维空隙中的流动剖面和对土壤颗粒的作用力。我们将为设计挖掘工程的工程师回答的关键问题包括:(1)聚合物流体通过土壤孔隙的容易程度(我们称之为土壤中聚合物流体的导电性)?(2)黏性极强的聚合物流体流入土壤时,对土壤颗粒施加了多大的稳定压力?(3)悬浮在流体中的聚合物链如何与土壤颗粒相互作用?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine O'Sullivan其他文献

Response to the discussion on “Coarse-grained molecular dynamics of clay compression”
对“黏土压缩的粗粒度分子动力学”讨论的回应
  • DOI:
    10.1016/j.compgeo.2022.105071
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Sara Bandera;Catherine O'Sullivan;Paul Tangney;Stefano Angioletti-Uberti
  • 通讯作者:
    Stefano Angioletti-Uberti

Catherine O'Sullivan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catherine O'Sullivan', 18)}}的其他基金

Rapid deployment of multi-functional modular sensing systems in the soil
在土壤中快速部署多功能模块化传感系统
  • 批准号:
    NE/T010983/1
  • 财政年份:
    2020
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant
PARTICLE-SCALE INVESTIGATION OF SEEPAGE INDUCED GEOTECHNICAL INSTABILITY
渗流引起的岩土不稳定的颗粒尺度研究
  • 批准号:
    EP/P010393/1
  • 财政年份:
    2017
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant
Micromechanics of seismic wave propagation in granular materials
地震波在颗粒材料中传播的微观力学
  • 批准号:
    EP/G064954/1
  • 财政年份:
    2009
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant
Automating particle size and shape measurement in soil mechanics
土壤力学中颗粒尺寸和形状的自动化测量
  • 批准号:
    EP/F068778/1
  • 财政年份:
    2008
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PERMEATION OF POLYMER FLUIDS IN SOILS (POPFS)
聚合物流体在土壤中的渗透 (POPFS)
  • 批准号:
    EP/X034437/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant
PERMEATION OF POLYMER FLUIDS IN SOILS (PoPFS)
聚合物流体在土壤中的渗透 (PoPFS)
  • 批准号:
    EP/X034453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Research Grant
Graphene Exfoliation in Polymer Nanocomposites Using Environment-friendly Supercritical Fluids: The Role of Interfacial Tension and Polymer Molecular Structure
使用环保超临界流体在聚合物纳米复合材料中石墨烯剥离:界面张力和聚合物分子结构的作用
  • 批准号:
    568387-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Postdoctoral Fellowships
Associative polymer-based fluids for enhanced oil recovery using produced saline water
用于使用采出盐水提高石油采收率的缔合聚合物液体
  • 批准号:
    RGPIN-2020-05951
  • 财政年份:
    2022
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Discovery Grants Program - Individual
Associative polymer-based fluids for enhanced oil recovery using produced saline water
用于使用采出盐水提高石油采收率的缔合聚合物液体
  • 批准号:
    RGPIN-2020-05951
  • 财政年份:
    2021
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Discovery Grants Program - Individual
Associative polymer-based fluids for enhanced oil recovery using produced saline water
用于使用采出盐水提高石油采收率的缔合聚合物液体
  • 批准号:
    RGPIN-2020-05951
  • 财政年份:
    2020
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Discovery Grants Program - Individual
Effect of mechanical interactions between polymers and fluids on flow dynamics of the polymer solution
聚合物和流体之间的机械相互作用对聚合物溶液流动动力学的影响
  • 批准号:
    19H02497
  • 财政年份:
    2019
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Performance of polymer support fluids for piling and diaphragm walls
用于打桩和连续墙的聚合物支撑液的性能
  • 批准号:
    2109009
  • 财政年份:
    2018
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Studentship
Dynamic Simulation of Polymer Adsorption in Flowing Fluids for Design of Polymer Thin-film Materials
流动流体中聚合物吸附的动态模拟用于聚合物薄膜材料的设计
  • 批准号:
    1132083
  • 财政年份:
    2011
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Standard Grant
Polymer micronization through extrusion with supercritical fluids
通过超临界流体挤出实现聚合物微粉化
  • 批准号:
    369132-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 79.54万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了