KUber: Knowledge Delivery System For Machine Learning At Scale

KUber:大规模机器学习的知识传递系统

基本信息

项目摘要

AI/ML systems are becoming an integral part of user products and applications as well as the main revenue driver for most organizations. This resulted in shifting the focus toward the Edge AI paradigm as edge devices possess the data necessary for training the models. Main Edge AI approaches either coordinate the training rounds and exchange model updates via a central server (i.e., Federated Learning), split the model training task between edge devices and a server (i.e., split Learning), or coordinate the model exchange among the edge devices via gossip protocols (i.e., decentralized training). Due to the highly heterogeneous learners, configurations, environment as well as significant synchronization challenges, these approaches are ill-suited for distributed edge learning at scale. They fail to scale with a large number of learners and produce models with low qualities at prolonged training times. It is imperative for modern applications to rely on a system providing timely and accurate models. This project addresses this gap by proposing a ground-up transformation to decentralized learning methods. Similar to Uber's delivery services, the goal of KUber is to build a novel distributed architecture to facilitate the exchange and delivery of acquired knowledge among the learning entities. In particular, we seize an opportunity to decouple the training task of a common model from the sharing task of learned knowledge. This is made possible by the advances in the AI/ML accelerators embedded in edge devices and the high-throughput and low-latency 5G/6G technologies. KUber will revolutionize the use of AI/ML methods in daily-life applications and open the door for flexible, scalable, and efficient collaborative learning between users, organizations, and governments.
人工智能/机器学习系统正在成为用户产品和应用程序不可或缺的一部分,也是大多数组织的主要收入驱动力。这导致焦点转向边缘人工智能范式,因为边缘设备拥有训练模型所需的数据。主要边缘人工智能方法要么通过中央服务器协调训练轮次和交换模型更新(即联邦学习),在边缘设备和服务器之间分割模型训练任务(即分割学习),要么通过八卦协议协调边缘设备之间的模型交换(即去中心化训练)。由于高度异构的学习器、配置、环境以及重大的同步挑战,这些方法不适合大规模分布式边缘学习。它们无法扩展大量学习者的规模,并且在长时间的训练中产生质量低下的模型。现代应用程序必须依赖提供及时、准确模型的系统。该项目通过提出对去中心化学习方法的彻底转变来解决这一差距。与 Uber 的交付服务类似,KUber 的目标是构建一种新颖的分布式架构,以促进学习实体之间所获得的知识的交换和交付。特别是,我们抓住机会将通用模型的训练任务与所学知识的共享任务解耦。这得益于边缘设备中嵌入的 AI/ML 加速器的进步以及高吞吐量和低延迟的 5G/6G 技术。 KUber 将彻底改变人工智能/机器学习方法在日常生活应用中的使用,并为用户、组织和政府之间灵活、可扩展和高效的协作学习打开大门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Mohamed Abdelmoniem Sayed其他文献

Ahmed Mohamed Abdelmoniem Sayed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Remote delivery of complex interventions within trials: understanding and applying knowledge from COVID-19 adaptations to guide future delivery, inclu
在试验中远程提供复杂的干预措施:理解和应用来自 COVID-19 适应的知识来指导未来的实施,包括
  • 批准号:
    2879833
  • 财政年份:
    2023
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Studentship
Creation and implementation of the adverse childhood experiences knowledge translation hub (ACEs KT-hub): Health service delivery improvement through the adoption of evidence-based practices and trauma-informed care
创建和实施不良童年经历知识转化中心(ACEs KT-hub):通过采用循证实践和创伤知情护理来改善卫生服务提供
  • 批准号:
    484644
  • 财政年份:
    2023
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Fellowship Programs
Developing a toolkit to facilitate surgical trial implementation and delivery- applying knowledge from qualitative research in trials
开发工具包以促进外科试验的实施和实施——在试验中应用定性研究的知识
  • 批准号:
    2745978
  • 财政年份:
    2022
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Studentship
Creating a Living Knowledge Translation Agenda to Improve the Delivery of Evidence-based Care in Adult Critical Care Medicine
制定活生生的知识转化议程,以改善成人重症监护医学中循证护理的实施
  • 批准号:
    389262
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Operating Grants
Identifying and Measuring Knowledge Spillovers of Health Service Delivery Interventions: A Network Analysis Approach
识别和衡量卫生服务提供干预措施的知识溢出:网络分析方法
  • 批准号:
    MR/P026834/1
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Research Grant
Develop new knowledge and practical tools - paradigm shift in the delivery of workplace skills development to meta-skills development
开发新知识和实用工具——从工作场所技能开发到元技能开发的范式转变
  • 批准号:
    2119693
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Studentship
Next generation imaging to bridge the knowledge gap in nanomedicine delivery
下一代成像弥合纳米医学输送方面的知识差距
  • 批准号:
    nhmrc : 1148582
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Career Development Fellowships
Next generation imaging to bridge the knowledge gap in nanomedicine delivery
下一代成像弥合纳米医学输送方面的知识差距
  • 批准号:
    nhmrc : GNT1148582
  • 财政年份:
    2018
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Career Development Fellowships
Knowledge Transfer Network Support for the (1) ‘Connected and Autonomous Vehicles 2’; (2) ‘Integrated Delivery Programme 13’; and (3) ‘Low Emission Freight Demonstration’ Competitions
知识转移网络支持 (1) – 联网和自动驾驶车辆 2 –;
  • 批准号:
    310116
  • 财政年份:
    2016
  • 资助金额:
    $ 66.61万
  • 项目类别:
    Knowledge Transfer Network
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了