Multi- Scale Quantitative Imaging of Dynamic Processes in Beyond-Li-ion Nanobatteries

超锂离子纳米电池动态过程的多尺度定量成像

基本信息

  • 批准号:
    EP/X03769X/1
  • 负责人:
  • 金额:
    $ 198.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Scanning transmission electron microscopy (STEM) currently provides unique atomic scale information about the structural changes occurring in battery materials after cycling has taken place. However, as this information is obtained post-mortem, usually either from solid-state electrode/electrolyte systems or from solid-liquid electrode/electrolyte interfaces observed under cryogenic conditions, the full potential of Operando STEM methods to identify the chemical species evolving during dynamic battery processes in both current state-of-the-art liquid electrolytes and in potential future solid-state electrolytes, has yet to be realised. The current limitations in Operando STEM for liquids are caused by the electrochemical chip design, whereby the liquid electrolyte needs to be unrealistically thin to ensure that there is sufficient image/analytical quality/sensitivity - the experimental set-up does not reproduce the complexities of a real battery and hence the observations are difficult to correlate with processes in technologically relevant batteries. Here, I propose to develop a first "real" nanobattery Operando cell for rapid and accurate testing of primarily beyond Li-ion chemistries, such as aqueous and/or non-aqueous Li and/or Ca batteries. This comparison of water-based and organic-based electrolytes, coupled with either 1+ or 2+ ions, provides a range of potential interactions that can be examined to understand the fundamental processes occurring at electrode/electrolyte interfaces and how they control the overall properties and lifetime of the battery system. In particular, the new experimental design proposed here will allow beam induced radiolytic species at nanomolar concentrations to be identified directly, filling a key knowledge gap in current experimentation where it is impossible to isolate the chemical changes caused by the electron beam during the operando experiment from the complex reactions initiated electrochemically. To facilitate this identification even further, this project will also focus on the use of compressive sensing STEM methodologies to optimise the sampling strategies and reduce the overall beam damage in the system, while increasing the temporal resolution of the observations. Furthermore, cross-contamination and cross-over of the electroactive chemical species will be minimized by the combination of these experimental strategies, permitting the implementation and testing of novel electrode/electrolyte combinations with a wide range of performance enhancing additives. A key novel component here is the coupling of a mass spectrometer with the nanobattery operando STEM cell for quantification of all chemical species generated during cycling. This means aqueous/non-aqueous Ca/Li batteries can be uniquely benchmarked and their potential for future applications be defined. A final part of this work is to use ptychography/holography to map local field changes across electrode/electrolyte interfaces. This work will focus primarily on solid-state systems initially using an open cell design for the operando testing and then be extended to the Ca/Li electrolytes in the liquid cell (a more challenging experiment given the stability and signal/noise issues), permitting a direct connection between the existing designs for liquid cells and the future incorporation of safer, solid state systems. The overall goal of this proposal is to create a multi-modal Operando (S)TEM platform that can be used to link nanoscale structure/composition and field changes with ion diffusion, thereby providing the core properties that can then accelerate the implementation of new battery chemistries.
扫描透射电子显微镜(STEM)目前提供了关于电池材料在循环发生后结构变化的独特原子尺度信息。然而,由于这些信息通常是在死后获得的,通常是从固态电极/电解质系统或在低温条件下观察到的固液电极/电解质界面中获得的,因此,Operando STEM方法在当前最先进的液体电解质和潜在的未来固态电解质中识别动态电池过程中化学物质演变的全部潜力尚未实现。目前,Operando STEM对液体的限制是由电化学芯片设计引起的,因此液体电解质需要薄得不切实际,以确保有足够的图像/分析质量/灵敏度——实验设置不能重现真实电池的复杂性,因此观察结果很难与技术相关电池的过程相关联。在这里,我建议开发第一个“真正的”纳米电池Operando电池,用于快速准确地测试锂离子以外的化学物质,如水和/或非水锂和/或钙电池。这种水基电解质和有机电解质的比较,加上1+或2+离子,提供了一系列潜在的相互作用,可以通过检查来了解电极/电解质界面发生的基本过程,以及它们如何控制电池系统的整体性能和寿命。特别是,这里提出的新实验设计将允许在纳摩尔浓度下直接识别光束诱导的辐射溶解物质,填补了当前实验中一个关键的知识空白,在这个空白中,不可能将电子束在operando实验中引起的化学变化与电化学引发的复杂反应分开。为了进一步促进这种识别,该项目还将重点关注压缩感知STEM方法的使用,以优化采样策略,减少系统中的整体光束损伤,同时提高观测的时间分辨率。此外,通过这些实验策略的组合,可以最大限度地减少电活性化学物质的交叉污染和交叉,从而实现和测试具有广泛性能增强添加剂的新型电极/电解质组合。这里的一个关键的新组件是质谱仪与纳米电池operando干细胞的耦合,用于定量循环过程中产生的所有化学物质。这意味着水/非水Ca/Li电池可以进行独特的基准测试,并确定其未来应用的潜力。这项工作的最后一部分是使用全息摄影来绘制电极/电解质界面上的局部场变化。这项工作将主要集中在固态系统上,最初使用开放式电池设计进行operando测试,然后扩展到液体电池中的Ca/Li电解质(考虑到稳定性和信号/噪声问题,这是一个更具挑战性的实验),允许在现有的液体电池设计和未来更安全的固态系统之间建立直接联系。该提案的总体目标是创建一个多模态Operando (S)TEM平台,该平台可用于将纳米级结构/组成和电场变化与离子扩散联系起来,从而提供可加速新电池化学实现的核心特性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MXene Aerogel Derived Ultra-Active Vanadia Catalyst for Selective Conversion of Sustainable Alcohols to Base Chemicals
  • DOI:
    10.1021/acsami.2c22720
  • 发表时间:
    2023-03-24
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Oefner, Niklas;Shuck, Christopher E.;Etzold, Bastian J. M.
  • 通讯作者:
    Etzold, Bastian J. M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beata Layla Mehdi其他文献

Novel synthesis organic–inorganic heterojunctions of protonated g-C<sub>3</sub>N<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/AgBr/AgCl/AgI quinary magnetic photocatalyst with enhanced visible-light photocatalytic degradation of methylene blue in water
  • DOI:
    10.1016/j.molliq.2024.126026
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Tianqi Liu;Hailian Huang;Yunzong Liu;Konstantinos Papadikis;Beata Layla Mehdi;Pow-Seng Yap;Graham Dawson
  • 通讯作者:
    Graham Dawson

Beata Layla Mehdi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
  • 批准号:
    22108101
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
  • 批准号:
    31600794
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
针对Scale-Free网络的紧凑路由研究
  • 批准号:
    60673168
  • 批准年份:
    2006
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Phylogenetic scale-dependency of the patterns and processes of quantitative trait evolution
职业:数量性状进化模式和过程的系统发育规模依赖性
  • 批准号:
    2237613
  • 财政年份:
    2023
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Continuing Grant
Quantitative prediction of aircraft stall phenomenon using spatial and temporal scale separation
利用空间和时间尺度分离对飞机失速现象进行定量预测
  • 批准号:
    23K13491
  • 财政年份:
    2023
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a simple, quantitative diaphragm function assessment scale for the elderly living in the community.
为社区老年人开发简单、定量的膈肌功能评估量表。
  • 批准号:
    22K17560
  • 财政年份:
    2022
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantitative Multi-Scale and -Contrast Optical Coherence Tomography
定量多尺度和对比光学相干断层扫描
  • 批准号:
    547832-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantitative Multi-Scale and -Contrast Optical Coherence Tomography
定量多尺度和对比光学相干断层扫描
  • 批准号:
    547832-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantitative estimation of sea water spray generated by a large-scale wave-overtopping at a vertical seawall
垂直海堤大规模浪翻浪产生海水喷雾的定量估算
  • 批准号:
    21H01438
  • 财政年份:
    2021
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: MSA: Upscaling soil organic carbon measurements at the continental scale: Evaluating emergent ecosystem properties using multivariate quantitative methods
合作研究:MSA:扩大大陆尺度土壤有机碳测量:使用多元定量方法评估新兴生态系统特性
  • 批准号:
    2106137
  • 财政年份:
    2021
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Standard Grant
Collaborative Research: MSA: Upscaling soil organic carbon measurements at the continental scale: Evaluating emergent ecosystem properties using multivariate quantitative methods
合作研究:MSA:扩大大陆尺度土壤有机碳测量:使用多元定量方法评估新兴生态系统特性
  • 批准号:
    2106138
  • 财政年份:
    2021
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
  • 批准号:
    2020914
  • 财政年份:
    2020
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Standard Grant
Quantitative Multi-Scale and -Contrast Optical Coherence Tomography
定量多尺度和对比光学相干断层扫描
  • 批准号:
    547832-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 198.42万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了