CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
基本信息
- 批准号:2020914
- 负责人:
- 金额:$ 25.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern computers are getting remarkably good at producing and understanding human language. But do they accomplish this in the same way that humans do? To address these questions, the investigators will derive measures of the difficulty of sentence comprehension by computer systems that are based on deep-learning technology, a technology that increasingly powers applications such as automatic translation and speech recognition systems. They will then use eye-tracking technology to compare the difficulty that people experience when reading sentences that are temporarily misleading, such as "the horse raced past the barn fell," with the difficulty encountered by the deep-learning systems. Based on this comparison, the researchers will modify the computer models to make them behave more like humans when processing language. This will enhance our understanding of the strategies that humans use to understand sentences while also having the potential to advance language processing technologies.The eye-tracking-while-reading measurements collected over the course of the project will be accessible to all in an open repository called the Garden Path Benchmark. This benchmark will combine the focus on syntactically challenging sentences traditionally used in psycholinguistics experiments with more recent ‘big data’ approaches to data collection and analysis. The resulting database will contain enough eye-tracking data to get clear estimates of the word-by-word processing difficulty associated with a range of constructions and specific sentences. This will allow researchers to test the quantitative predictions of deep-learning systems and other computational models at a scale that has previously not been possible. The dataset will also be used to develop parsing models that integrate contemporary deep-learning architectures with traditional symbolic parsing models from the psycholinguistics literature. This fusion will make it possible to incorporate scientific assumptions about human cognitive processes, such as reanalysis (the revision of the interpretation of a sentence when it turns out that the reader’s first interpretation was incorrect), into the neural networks. Both the Garden Path Benchmark and the models developed will be released as open access to other researchers, to support further efforts to align machine learning models and human language processing models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代计算机在产生和理解人类语言方面正变得非常出色。但它们能像人类一样做到这一点吗?为了解决这些问题,调查人员将得出基于深度学习技术的计算机系统理解句子的难度的衡量标准,这种技术越来越多地支持自动翻译和语音识别系统等应用程序。然后,他们将使用眼球跟踪技术,将人们在阅读暂时具有误导性的句子时所经历的困难与深度学习系统所遇到的困难进行比较,例如“马跑过谷仓坠落”。基于这种比较,研究人员将修改计算机模型,使其在处理语言时表现得更像人类。这将加强我们对人类用来理解句子的策略的理解,同时也有可能推动语言处理技术的进步。在项目过程中收集的眼球跟踪阅读测量结果将在一个名为花园路径基准的开放储存库中向所有人开放。这一基准将把重点放在心理语言学实验中传统上具有句法挑战性的句子上,并结合最近的大数据方法来收集和分析数据。由此产生的数据库将包含足够的眼球跟踪数据,以清楚地估计与一系列结构和特定句子相关的逐字处理难度。这将使研究人员能够在以前不可能的规模上测试深度学习系统和其他计算模型的定量预测。该数据集还将用于开发分析模型,该模型将当代深度学习体系结构与心理语言学文献中的传统符号分析模型相结合。这种融合将使将关于人类认知过程的科学假设纳入神经网络成为可能,例如重新分析(当读者的第一次解释被证明是错误的时,对句子的解释进行修改)。Garden Path基准和开发的模型都将作为开放获取发布给其他研究人员,以支持进一步协调机器学习模型和人类语言处理模型的努力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Syntactic Surprisal From Neural Models Predicts, But Underestimates, Human Processing Difficulty From Syntactic Ambiguities
神经模型的句法惊喜预测但低估了句法歧义带来的人类处理难度
- DOI:10.18653/v1/2022.conll-1.20
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Arehalli, Suhas;Dillon, Brian;Linzen, Tal
- 通讯作者:Linzen, Tal
Single‐Stage Prediction Models Do Not Explain the Magnitude of Syntactic Disambiguation Difficulty
单阶段预测模型无法解释句法消歧困难的严重程度
- DOI:10.1111/cogs.12988
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:van Schijndel, Marten;Linzen, Tal
- 通讯作者:Linzen, Tal
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Dillon其他文献
The Measurement, Estimation And Analysis Of Subjective Probability Distributions: With Applications To Investment And Production Decisions In Rural Tanzania
主观概率分布的测量、估计和分析:在坦桑尼亚农村投资和生产决策中的应用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Brian Dillon - 通讯作者:
Brian Dillon
Together They Stand: Interpreting Not-At-Issue Content
他们站在一起:解释非争议内容
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.8
- 作者:
L. Frazier;Brian Dillon;C. Clifton - 通讯作者:
C. Clifton
Attachment and Concord of Temporal Adverbs: Evidence From Eye Movements
时间副词的依附与一致性:来自眼动的证据
- DOI:
10.3389/fpsyg.2019.00983 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
N. Biondo;F. Vespignani;Brian Dillon - 通讯作者:
Brian Dillon
No longer an orphan: evidence for appositive attachment from sentence comprehension
不再是孤儿:句子理解中同位依恋的证据
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Brian Dillon;L. Frazier;C. Clifton - 通讯作者:
C. Clifton
Experimental Syntax and Island Effects: On the structural nature of island constraints
实验语法和岛屿效应:论岛屿约束的结构性质
- DOI:
10.1017/cbo9781139035309.011 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Brian Dillon;N. Hornstein - 通讯作者:
N. Hornstein
Brian Dillon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Dillon', 18)}}的其他基金
Doctoral Dissertation Research: Processing garden paths across dialects: A study of African American English
博士论文研究:跨方言处理花园路径:非裔美国英语研究
- 批准号:
2214919 - 财政年份:2022
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
NSF-BSF: Bridging encoding and retrieval perspectives on sentence processing errors: Comparing Hebrew and English
NSF-BSF:桥接句子处理错误的编码和检索视角:比较希伯来语和英语
- 批准号:
2146798 - 财政年份:2022
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Disjoint reference in real-time comprehension: Computational and cross-linguistic perspectives
实时理解中的不相交参考:计算和跨语言视角
- 批准号:
1941485 - 财政年份:2020
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Workshop on Human Sentence Processing March 2020: Amherst, MA
人类句子处理研讨会 2020 年 3 月:马萨诸塞州阿默斯特
- 批准号:
1918104 - 财政年份:2019
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: The role of animacy and obviation in the processing of Ojibwe relative clauses
博士论文研究:生命性和回避性在奥及布威语关系从句处理中的作用
- 批准号:
1918244 - 财政年份:2019
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Reinterpreting Condition B: An Investigation of Pronominal Reference in Romanian
博士论文研究:重新解释条件B:罗马尼亚语代词指代的调查
- 批准号:
1823686 - 财政年份:2018
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Computing agreement in a mixed system - A psycholinguistic comparison of subject and object agreement
博士论文研究:混合系统中的计算一致性——主客体一致性的心理语言学比较
- 批准号:
1749290 - 财政年份:2018
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
- 批准号:
2235362 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Modeling Search within the Mental Lexicon
合作研究:CompCog:心理词典中的建模搜索
- 批准号:
2235363 - 财政年份:2023
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
- 批准号:
2121009 - 财政年份:2021
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
- 批准号:
2043903 - 财政年份:2021
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Psychological, Computational, and Neural Adequacy in a Deep Learning Model of Human Speech Recognition
合作研究:CompCog:人类语音识别深度学习模型中的心理、计算和神经充分性
- 批准号:
2043950 - 财政年份:2021
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Adversarial Collaborative Research on Intuitive Physical Reasoning
协作研究:CompCog:直观物理推理的对抗性协作研究
- 批准号:
2121102 - 财政年份:2021
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
CompCog: Collaborative Research: Testing quantitative predictions of sentence processing theories with a large-scale eye-tracking database
CompCog:协作研究:使用大型眼动追踪数据库测试句子处理理论的定量预测
- 批准号:
2020945 - 财政年份:2020
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: Achieving Analogical Reasoning via Human and Machine Learning
合作研究:CompCog:通过人类和机器学习实现类比推理
- 批准号:
1827374 - 财政年份:2018
- 资助金额:
$ 25.67万 - 项目类别:
Standard Grant