Computational Studies of Ambient Catalytic Dinitrogen Reduction by Electropositive Metal Tetraphenolate Complexes
正电金属四酚盐配合物环境催化二氮还原的计算研究
基本信息
- 批准号:EP/X042049/1
- 负责人:
- 金额:$ 63.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The worldwide industrial catalytic conversion of nitrogen to millions of tons of ammonia per annum is a starting point for the production of pharmaceuticals, plastics, fine chemicals and fertiliser. The latter has enabled the lives of around 3 billion people and addresses the United Nations global sustainable development goal #2: zero hunger. The high pressure/temperature Haber-Bosch (HB) process that converts nitrogen and hydrogen to ammonia, known as the nitrogen reduction reaction (N2RR), is perfectly optimised but still very energy intensive. Small scale, low-energy N2RR reactions, including to products other than ammonia, would be complementary to the HB process. They would also improve energy justice by allowing isolated communities to generate their own fertilisers or amines, and potentially facilitate off-world food production. Furthermore, ammonia has the potential to replace fossil fuels as an energy carrier, as it is energy dense and compatible with current infrastructures and fuel cell technologies. However, its incorporation into renewable technologies demands further understanding and better catalysts.Professor Polly Arnold, from the University of California at Berkeley and the Project Partner on this proposal, has recently reported the synthesis and characterisation of molecular uranium and thorium complexes that can convert nitrogen to ammonia at room temperature and pressure, and the first catalytic conversion of dinitrogen into a secondary silylamine by any metal. She has now extended this work to cerium and samarium analogues - the first non-radioactive f-block N2RR catalysts. All of these molecules feature two metal atoms, held in place by two tetraphenol-arene (mTP) ligands. Arnold has also synthesised d-block analogues using titanium and zirconium, which again can effect catalytic conversion of nitrogen to secondary silylamines, and uranium and lanthanide compounds containing two metals but only one mTP ligand, some of which are also effective catalysts. Work is ongoing in Arnold's laboratories to optimise this chemistry, and extend it to other metals, including the very abundant s-block elements calcium, strontium and barium. The proposed research is a comprehensive programme of computational quantum chemistry in the laboratory of Principal Investigator Kaltsoyannis to link synergistically with, and guide, Arnold's ongoing experimental development of new bimetallic homogeneous catalysts for the conversion of nitrogen to ammonia, and secondary or tertiary amines, with particular emphasis on furnishing detailed mechanistic and electronic structural insight. Kaltsoyannis and Arnold have collaborated on many previous projects, and have made important and well-received contributions to f and d block chemistry. Arnold's earlier report of uranium and thorium N2RR catalysts included quantum chemical analysis of the reaction mechanism, and the combination of experiment and computation was essential to the success of that work. The proposed combination of experiment and theory will yield new N2RR chemistry and catalysts, and deep insight into both mechanism and electronic structure. It will deconvolute the roles of the alkali metal reductant, mTP ligand and the Lewis acidic f-, d- and s-block metals to understand the path of the electrons to the metal bound nitrogen, and their subsequent behaviour. In so doing, it will also make fundamental contributions to understanding the role of d and f orbitals in bonding, including the interplay of these orbitals in f block chemistry. It is also anticipated that significant success in catalysis arising from the target compounds will stimulate further advances in the field of electropositive d block catalysis.
全世界每年将氮催化转化为数百万吨氨的工业是生产药品、塑料、精细化学品和化肥的起点。后者使约30亿人的生活得以改善,并实现了联合国全球可持续发展目标2:零饥饿。将氮气和氢气转化为氨的高压/高温哈伯-博世(HB)工艺,即氮气还原反应(N2 RR),经过完美优化,但仍然非常耗能。小规模、低能量的N2 RR反应,包括生成除氨以外的产品,将是HB工艺的补充。它们还将通过允许孤立的社区生产自己的肥料或胺来改善能源正义,并可能促进外世界的粮食生产。此外,氨具有替代化石燃料作为能量载体的潜力,因为它是能量密集型的,并且与当前的基础设施和燃料电池技术兼容。然而,将其纳入可再生技术需要进一步的理解和更好的催化剂。来自加州大学伯克利分校的Polly Arnold教授和该项目的合作伙伴最近报告了分子铀和钍络合物的合成和表征,这些络合物可以在室温和压力下将氮转化为氨,和通过任何金属将二氮第一次催化转化为仲甲硅烷基胺。她现在已经将这项工作扩展到铈和钐类似物-第一个非放射性f区N2 RR催化剂。所有这些分子都具有两个金属原子,由两个四酚芳烃(mTP)配体固定。Arnold还使用钛和锆合成了d-嵌段类似物,其同样可以实现氮到仲甲硅烷基胺的催化转化,以及含有两种金属但仅一种mTP配体的铀和镧系化合物,其中一些也是有效的催化剂。阿诺德的实验室正在进行工作,以优化这种化学反应,并将其扩展到其他金属,包括非常丰富的s区元素钙,锶和钡。拟议的研究是主要研究者Kaltsoyannis实验室的计算量子化学综合方案,与Arnold正在进行的用于将氮转化为氨和仲胺或叔胺的新型非均相催化剂的实验开发协同联系并指导,特别强调提供详细的机械和电子结构见解。Kaltsoyannis和Arnold在以前的许多项目中进行了合作,并对f和d区化学做出了重要和广受欢迎的贡献。阿诺德早期关于铀和钍N2 RR催化剂的报告包括对反应机理的量子化学分析,实验和计算的结合是这项工作成功的关键。实验和理论的结合将产生新的N2 RR化学和催化剂,并深入了解机理和电子结构。它将解卷积的碱金属还原剂,mTP配体和刘易斯酸性的f-,d-和s-块金属的作用,以了解的路径的电子的金属结合氮,和他们随后的行为。在这样做的过程中,它也将为理解d和f轨道在成键中的作用做出根本性的贡献,包括这些轨道在f块化学中的相互作用。预期目标化合物在催化方面的重大成功将刺激正电性d嵌段催化领域的进一步发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nik Kaltsoyannis其他文献
Nik Kaltsoyannis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nik Kaltsoyannis', 18)}}的其他基金
Technical Feasibility and Evaluation Study of Modern Computational Chemistry Methods for the Study of High Atomic Number Materials
现代计算化学方法研究高原子序数材料的技术可行性及评价研究
- 批准号:
ST/R000026/1 - 财政年份:2017
- 资助金额:
$ 63.07万 - 项目类别:
Research Grant
FORTRESS: F block cOvalency and Reactivity defined by sTructural compRESSibility
FORTRESS:由结构压缩性定义的 F 嵌段价和反应性
- 批准号:
EP/N021932/1 - 财政年份:2016
- 资助金额:
$ 63.07万 - 项目类别:
Research Grant
相似海外基金
In-situ studies of electrocatalysts using Near-Ambient Pressure
使用近环境压力对电催化剂进行原位研究
- 批准号:
1879317 - 财政年份:2017
- 资助金额:
$ 63.07万 - 项目类别:
Studentship
The studies on the influence of ambient salinity on the nutritional requirement in fishes
环境盐度对鱼类营养需求影响的研究
- 批准号:
25660165 - 财政年份:2013
- 资助金额:
$ 63.07万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
EAGER: High-Speed Imaging Studies of Fuel-Spray Physics for Low-Temperature and Low-Density Ambient Conditions
EAGER:低温和低密度环境条件下燃料喷雾物理的高速成像研究
- 批准号:
1247334 - 财政年份:2012
- 资助金额:
$ 63.07万 - 项目类别:
Standard Grant
Theoretical and Observational Studies of Surface Wave Attenuation From Ambient Noise
环境噪声表面波衰减的理论和观测研究
- 批准号:
1215824 - 财政年份:2012
- 资助金额:
$ 63.07万 - 项目类别:
Continuing Grant
Non-ambient Studies on Opto-electronic Materials
光电材料的非环境研究
- 批准号:
EP/F021151/1 - 财政年份:2008
- 资助金额:
$ 63.07万 - 项目类别:
Research Grant
Materials World Network: Studies of Quantum Phase Transitions by MuSR in Ambient and Applied Pressure
材料世界网络:MuSR 在环境压力和外加压力下研究量子相变
- 批准号:
0806846 - 财政年份:2008
- 资助金额:
$ 63.07万 - 项目类别:
Continuing Grant
New Approach to Experimental Studies of Dynamics and Reactions in Condensed Aqueous Phase at Temperatures Near Ambient
接近环境温度下凝聚水相动力学和反应实验研究的新方法
- 批准号:
0416091 - 财政年份:2004
- 资助金额:
$ 63.07万 - 项目类别:
Continuing Grant
Individual-Particle Studies of Cloud Droplet Residues and Ambient Aerosols in RICO: Effects of Particle Size, Composition, Surface Properties and Mixing State on Trade-Wind Cumuli
RICO 中云滴残留物和环境气溶胶的单个颗粒研究:颗粒尺寸、成分、表面性质和混合状态对信风积云的影响
- 批准号:
0342648 - 财政年份:2004
- 资助金额:
$ 63.07万 - 项目类别:
Continuing Grant
TIME-RESOLVED IR SPECTROMETRIC DETECTION SYSTEM FOR KINETIC AND STRUCTURAL STUDIES OF REACTIVE INTERMEDIATES AT AMBIENT TEMPERATURE
用于反应中间体在环境温度下的动力学和结构研究的时间分辨红外光谱检测系统
- 批准号:
11554031 - 财政年份:1999
- 资助金额:
$ 63.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigating the honeypot effect on (semi-)public ambient displays in long-term field studies
在长期实地研究中调查蜜罐对(半)公共环境显示的影响
- 批准号:
451069094 - 财政年份:
- 资助金额:
$ 63.07万 - 项目类别:
Research Grants














{{item.name}}会员




