Intelligent Dependable Environment Control For Sustainable Aquaculture

可持续水产养殖的智能可靠环境控制

基本信息

  • 批准号:
    EP/Y000773/1
  • 负责人:
  • 金额:
    $ 20.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Over the years, changes in the hydrological environment have introduced new issues and challenges to aquaculture and fish farming. Technologies and research programs have been developed to manage these challenges but there is still significant space for improvement. With the world's population on course to reach 9.7 billion by 2050, the global demand for protein is expected to grow by 40%. One way to meet our protein needs is to sustainably maintain both wild fish reserves and farmed fish. However, with pressure on the already over-exploited wild fish reserves, communities in the UK and worldwide, including the UN's Food and Agriculture Organization, are calling for more efficient ways to manage both freshwater and wild fish stocks and the ocean's natural biodiversity. Looking beyond UK's 2030 aquacultural production targets for the main UK species requires urgent consideration of robotics and autonomous systems technologies to deliver increased production without compromising the environment.The current operations for pond-based or sea-based aquaculture farms are highly dependent on manual labor and close human interactions with the process and cage structures. The functions of existing equipment and apparatus and their dexterity being used in UK's aquaculture industry are limited, particularly in underwater environments. It would help if we provide fish with optimal environmental conditions by maintaining water quality, reducing stress levels, protecting against parasitic outbreaks, and ensuring there is enough food-and developing the technology to do so. The project aims to develop a dependable, cognitive, functionalized robot-assisted aquacultural platform that facilitates environment control and undertakes smart fish-farming operations such as fish feeding, fish monitoring, marine organisms collecting, water quality monitoring and analysis, net/cage cleaning, etc., regardless of the water types (freshwater, seawater) and hydrological environment (ponds, offshore). The project aims to create a new, long-term, sustainable, and strategic partnership between partners and reinforce the theoretical, technical, and practical knowledge and multidisciplinary skills to make crucial contributions to foster UK's ability for reliable design and development of robot-assisted environment control platforms for sustainable growth in aquaculture production to meet UK's 2030 targets. The partnership will collaborate in joint research, partnership building, knowledge transfer and training under the topics of robotics, dependable systems, complex system management and control, ICT, AI and machine learning, data representation and analytics, fishery biotechnology, hybrid modelling and intelligent control and their applications in sustainable aquaculture.
多年来,水文环境的变化给水产养殖和养鱼带来了新的问题和挑战。已经开发了应对这些挑战的技术和研究计划,但仍有很大的改进空间。到2050年,世界人口将达到97亿,全球对蛋白质的需求预计将增长40%。满足我们蛋白质需求的一种方法是可持续地维持野生鱼类和养殖鱼的储备。然而,随着已经过度开发的野生鱼类保护区面临压力,英国和世界各地的社区,包括联合国粮食及农业组织,呼吁采取更有效的方式来管理淡水和野生鱼类资源以及海洋的自然生物多样性。展望英国2030年主要物种的水产养殖生产目标,迫切需要考虑机器人和自主系统技术,以在不损害环境的情况下提高产量。目前池塘或海上水产养殖场的运营高度依赖体力劳动以及与过程和网箱结构的密切人类互动。现有设备和仪器的功能及其在英国水产养殖业中使用的灵活性有限,特别是在水下环境中。如果我们通过保持水质、降低压力水平、防止寄生虫爆发、确保有足够的食物--并开发这样做的技术--为鱼类提供最佳的环境条件,这将是有帮助的。该项目旨在开发一个可靠的、认知的、功能化的机器人辅助水产养殖平台,促进环境控制,并进行智能养鱼作业,如喂鱼、鱼类监测、海洋生物采集、水质监测和分析、网箱清洁等,无论水类型(淡水、海水)和水文环境(池塘、近海)如何。该项目旨在在合作伙伴之间建立一种新的、长期的、可持续的和战略的合作伙伴关系,并加强理论、技术和实践知识以及多学科技能,为培养英国可靠地设计和开发机器人辅助环境控制平台的能力做出重要贡献,以实现英国水产养殖生产的可持续增长,以实现英国2030年的目标。该伙伴关系将在机器人、可靠系统、复杂系统管理和控制、信通技术、人工智能和机器学习、数据表示和分析、渔业生物技术、混合建模和智能控制及其在可持续水产养殖中的应用等主题下,在联合研究、伙伴关系建设、知识转让和培训方面进行合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pengcheng Liu其他文献

Analytical modeling of the oil steam ratio during the lifetime steam-assisted gravity drainage process in extra-heavy oil reservoirs
超稠油油藏全寿命期蒸汽辅助重力泄油过程油汽比分析模型
  • DOI:
    10.1016/j.petrol.2021.108616
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lanxiang Shi;Xiuluan Li;Changfeng Xi;Zongyao Qi;Pengcheng Liu
  • 通讯作者:
    Pengcheng Liu
A novel method of calculating the engagement length of the cutting edge in five-axis machining
五轴加工切削刃啮合长度计算新方法
Preoperative Computed Tomography in Guiding the Length of Cannulated Screws in Medial Malleolar Fractures
术前计算机断层扫描指导内踝骨折空心螺钉长度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pengcheng Liu;Chen Xu;Zhaoxun Chen;Joanna Xi Xiao;Chen Zhao;Fei Yang;Xiaoqing Wang
  • 通讯作者:
    Xiaoqing Wang
A dual-templating strategy for the scale-up synthesis of dendritic mesoporous silica nanospheres
用于放大合成树枝状介孔二氧化硅纳米球的双模板策略
  • DOI:
    10.1039/c7gc02139a
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Pengcheng Liu;Ye-Jun Yu;Bo Peng;Shi-yu Ma;Tian-Yu Ning;Bing-Qian Shan;Tai-Qun Yang;Qing-Song Xue;Kun Zhang;Peng Wu
  • 通讯作者:
    Peng Wu
Experimental Investigation and Numerical Simulation of Dynamic Characteristics for Multithermal Fluid-Assisted SAGD in Extraheavy Oil Reservoir
特稠油藏多热流体辅助SAGD动态特性实验研究及数值模拟
  • DOI:
    10.2113/2021/8369713
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Zhenhua Xu;Xiaokun Zhang;Zhenyi Cao;Pengcheng Liu;Zhe Yuan;Lanxiang Shi;Botao Kang
  • 通讯作者:
    Botao Kang

Pengcheng Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DEPENDABLE SMART ENERGY SYSTEMS
可靠的智能能源系统
  • 批准号:
    EP/Y036700/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Research Grant
Development of model checking technology for dependable distributed systems
可靠分布式系统模型检测技术的开发
  • 批准号:
    23H03370
  • 财政年份:
    2023
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2238873
  • 财政年份:
    2023
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Continuing Grant
CAREER: Dependable and Secure Machine Learning Acceleration from Untrusted Hardware
职业:来自不受信任的硬件的可靠且安全的机器学习加速
  • 批准号:
    2349538
  • 财政年份:
    2023
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Continuing Grant
Fault-Tolerant Energy Management for Highly Dependable Real-Time Embedded Systems
高度可靠的实时嵌入式系统的容错能源管理
  • 批准号:
    2302651
  • 财政年份:
    2023
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Standard Grant
High Dependable IoT System Platform by Verifying Synchronization of Distributed IoT Environment Supporting DX
通过验证支持 DX 的分布式物联网环境的同步性,构建高可靠的物联网系统平台
  • 批准号:
    23H03388
  • 财政年份:
    2023
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Power of Dependable Souls (PODS): A group-based, leisure-based community participation intervention for adults with serious mental illnesses
可靠灵魂的力量 (PODS):针对患有严重精神疾病的成年人的基于团体、休闲的社区参与干预措施
  • 批准号:
    22K17564
  • 财政年份:
    2022
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dependable Predictive Inference with Uncertainty-Aware Machine Learning
通过不确定性感知机器学习进行可靠的预测推理
  • 批准号:
    2210637
  • 财政年份:
    2022
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Continuing Grant
DIADEM: debugging made dependable and measurable
DIADEM:调试变得可靠且可衡量
  • 批准号:
    EP/W012308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Research Grant
Dependable Analysis of Network Application Data
网络应用数据的可靠分析
  • 批准号:
    RGPIN-2020-04696
  • 财政年份:
    2022
  • 资助金额:
    $ 20.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了