Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)

基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)

基本信息

  • 批准号:
    EP/Y002318/1
  • 负责人:
  • 金额:
    $ 21.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Diabetes is a tremendous health problem with 537 million cases worldwide in 2021 and contributing to millions of deaths each year. The annual global health expenditure on diabetes is expected to reach GBP 876 billion by 2045. Spectroscopic technologies (e.g. gas chromatography and mass spectrometry), alternative to invasive glucose blood testing, still dominate the non-invasive breath analysis market for diabetes screening and monitoring, however, these technologies are relatively expensive, slow, complex and require specialist skills to use and to interpret results. In comparison to those techniques, nanomaterials-based sensors (e.g. metal oxide semiconductor (MOS)) provide advantages such as simple, sensitivity, small size, ease of operation, and minimum maintenance requirements. However, most of the MOS-based sensors require high operating temperatures (200-500 oC) resulting in high energy consumption. Furthermore, MOSs only allow limited discrimination between different gases (e.g. alcohols and ketones) which cannot be determined without specialised spectroscopic techniques. Therefore, the development on the nanomaterials have been motivated. Metal-organic framework (MOF)-based materials are favourable due to their tunable pore sizes and shapes, high surface area, and nanopore structures, which allow easy diffusion of guest molecules into the highly-ordered frameworks, but the problems such as (mostly) their nonconducting characteristic, poor stability, unclarified and complicated gas sensing mechanism need to be solved, thus the innovation of structures for MOF-based electrodes calls for further exploration. The SEEDDM project will bring together internationally recognised researchers in heterojunction-based materials architectures and modelling from UM (Kuala Lumpur, Malaysia) and the expertise of UoE (Edinburgh, UK) in the development of porous nanomaterials to work on the conductive monolith metal-organic framework (MOF) coupled with suitable hydrogel electrolytes for breath (volatile organic compounds) VOC sensing in the applications of early diabetes diagnosis and monitoring. Our joint approach aims to solve the research challenges (synergy effects of conductive monolith MOF electrodes and hydrogel electrolytes to work at ultra-low power and room temperature environment) for the purpose of innovating inexpensive, portable, and high-performance devices. Diabetes biomarkers that could be detectable in breath are VOCs, which include acetone, isoprene, carbon monoxide, ammonia, and alkanes. Through collaboration with UM, state-of-the-art materials and device characterisation techniques will be used to understand the underlying mechanisms which will advance our ability to develop improved clinical decision, making personalised therapies combined increased levels of self-monitoring and diagnostics. The successful of this research will potentially ease the pressure of NHS on early diabetes screening and monitoring.After successfully fulfilling SEEDDM, we aim to innovate a portable, non-invasive breath analyser that exhibits high sensitivity (e.g. 0.05-3 ppm acetone detection at room temperature), high selectivity of target gases (e.g. ketone, alcohol), fast T90 response time (the time consumed when the gas detector changes from reading 0 to 90% of the full scale gas concentration) less than 60s, and stable cycle of more than 1,000 redox cycles (>85% humidity). Medical monitoring devices and wearable health technology have seen rapid growth over the past years (£17.5 billion in 2021 to £162.6 billion by 2030, a CAGR of 28.1%). Therefore, SEEDDM will not only help advance the quality of healthcare research and innovative efforts in the UK and Malaysia, but also strengthen and stimulate the development of new technologies in the healthcare industry.
糖尿病是一个巨大的健康问题,2021年全球有5.37亿例糖尿病病例,每年导致数百万人死亡。到2045年,全球每年用于糖尿病的卫生支出预计将达到8760亿英镑。光谱技术(如气相色谱和质谱)作为侵入性血糖血液检测的替代方法,仍然主导着糖尿病筛查和监测的非侵入性呼吸分析市场,然而,这些技术相对昂贵、缓慢、复杂,并且需要专业技能来使用和解释结果。与这些技术相比,基于纳米材料的传感器(例如金属氧化物半导体(MOS))具有简单、敏感、体积小、易于操作和最低维护要求等优点。然而,大多数基于mos的传感器需要高工作温度(200-500℃),导致高能耗。此外,MOSs只允许对不同气体(如醇和酮)进行有限的区分,而这些气体没有专门的光谱技术是无法确定的。因此,推动了纳米材料的发展。金属有机框架(MOF)基材料具有孔径和形状可调、比表面积高、纳米孔结构方便靶分子向高有序框架内扩散等优点,但主要存在不导电、稳定性差、气敏机理不明确和复杂等问题,因此MOF基电极结构的创新有待进一步探索。SEEDDM项目将汇集来自UM(马来西亚吉隆坡)的异质结材料架构和建模方面的国际知名研究人员,以及UoE(英国爱丁堡)在多孔纳米材料开发方面的专业知识,以研究导电单体金属有机框架(MOF),以及用于呼吸(挥发性有机化合物)VOC传感的合适水凝胶电解质,用于早期糖尿病诊断和监测应用。我们的合作方法旨在解决研究挑战(导电单体MOF电极和水凝胶电解质在超低功耗和室温环境下工作的协同效应),以创新廉价,便携和高性能的设备。在呼吸中可以检测到的糖尿病生物标志物是挥发性有机化合物,包括丙酮、异戊二烯、一氧化碳、氨和烷烃。通过与UM的合作,最先进的材料和设备表征技术将用于了解潜在的机制,这将提高我们开发改进临床决策的能力,使个性化治疗结合更高水平的自我监测和诊断。这项研究的成功将潜在地缓解NHS在早期糖尿病筛查和监测方面的压力。在成功实现SEEDDM后,我们的目标是创新一种便携式无创呼吸分析仪,具有高灵敏度(例如室温下0.05-3 ppm丙酮检测),目标气体(例如酮,酒精)的高选择性,快速T90响应时间(气体探测器从读取0到90%的满标气体浓度时所消耗的时间)小于60s,以及超过1000个氧化还原循环(>85%湿度)的稳定循环。医疗监测设备和可穿戴健康技术在过去几年中快速增长(2021年为175亿英镑,到2030年为1626亿英镑,复合年增长率为28.1%)。因此,SEEDDM不仅将有助于提高英国和马来西亚医疗保健研究和创新工作的质量,而且还将加强和刺激医疗保健行业新技术的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharel Peisan E其他文献

Sharel Peisan E的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Metal-organic framework thin films for electrocatalysis: A combined ex situ and in situ investigation
用于电催化的金属有机骨架薄膜:异位和原位联合研究
  • 批准号:
    EP/Y002911/1
  • 财政年份:
    2024
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Transforming Supercapacitors by using Metal-Organic Framework Electrodes
使用金属有机框架电极改造超级电容器
  • 批准号:
    EP/X042693/1
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Research Grant
Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
  • 批准号:
    10679785
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
Glassy metal-organic framework membranes for CO2 separation and conversion
用于二氧化碳分离和转化的玻璃状金属有机骨架膜
  • 批准号:
    DE230100147
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Metal organic framework-based membrane for nanoplastics removal
用于去除纳米塑料的金属有机骨架膜
  • 批准号:
    DE230101306
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Early Career Researcher Award
Metal-Organic Framework Acts as a Hydrogen Evolution Cocatalyst for Overall Photocatalytic Water Splitting
金属有机框架作为整体光催化水分解的析氢助催化剂
  • 批准号:
    23KJ1388
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Confinement Effects & Emergent Reactivity in Multifunctional Metal-Organic Framework (MOF)-Based Catalysts
职业:限制效应
  • 批准号:
    2240021
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Continuing Grant
Responsive Metal-organic Framework Glass Membranes for Molecular Sieving
用于分子筛分的响应式金属有机框架玻璃膜
  • 批准号:
    DP230101901
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Discovery Projects
Hybridization of zeolite and metal-organic framework (MOF) glass as bifunctional catalyst for high productivity of light olefins from CO2
沸石和金属有机骨架(MOF)玻璃的杂化作为双功能催化剂,用于从二氧化碳中高产率生产轻质烯烃
  • 批准号:
    23K13719
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structure and dynamics of ionic liquids confined in nano-pores of metal-organic framework
金属有机骨架纳米孔内离子液体的结构与动力学
  • 批准号:
    23H01788
  • 财政年份:
    2023
  • 资助金额:
    $ 21.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了