Selective C(sp3)–H Functionalization Enabled by Metal-Organic Framework Catalysis
金属有机框架催化实现选择性 C(sp3)–H 官能化
基本信息
- 批准号:10679785
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2023-08-16
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdsorptionBindingBinding SitesCarbonCatalysisChemicalsComplexCouplingDedicationsDevelopmentElectronsEnvironmentEstersGasesGenerationsHydrogenHydrogen BondingInductively Coupled Plasma Mass SpectrometryInstitutionIsomerismLiquid substanceMassachusettsMediatingMedicineMetalsMethodologyMethodsModern MedicineOrganic SynthesisPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePositioning AttributeProcessProductivityPropertyReactionReportingResearchResourcesRestSiteSpace MedicineStructureTechniquesTechnologyTimeTrainingWorkcatalystchemical synthesisdesigndrug candidatedrug discoveryhalogenationimprovedinsightinventionnovelnovel strategiesoxidationsmall molecule
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite decades of research dedicated to expanding the structural complexity accessible to medicinal chemists,
organic synthesis remains a time- and resource-intensive component of drug-discovery. To address this
challenge, synthetic organic chemists have focused on inventing new methodologies to couple widely available
building blocks into drug-like products, expanding the range of bioactive compounds directly accessible from
simple precursors. Relatively few studies, however, have focused instead on increasing the diversity and
complexity of those readily accessible precursors. As a small number of privileged reactions represent the
majority of synthetic steps conducted within drug discovery, providing access to a broad range of building blocks
for such transformations could dramatically expand accessible chemical space for medicinal chemists. Towards
this end, methods for the functionalization of C–H bonds have the potential to revolutionize the synthesis of
pharmaceutically relevant fragments by enabling the introduction of valuable functionality at ubiquitous but
traditionally unreactive sites. Unfortunately, due to the abundance of C–H bonds, this approach often suffers
from poor selectivity, resulting in challenging purifications of isomers and diminished yields. As a general strategy
to facilitate selective C–H functionalization, the proposed research will leverage the remarkable properties of
metal-organic frameworks (MOFs), which can both selectively bind small organic molecules and stabilize highly
reactive species capable of cleaving C(sp3)–H bonds. By holding specific C–H bonds near the site of reactivity,
selectivity based on the binding pose of the substrate within the MOF pore—not the inherent reactivity of each
C–H bond—can determine the functionalized position. Employing MOFs capable of supporting metal-oxo
species with substrate-binding linkers or, alternatively, MOFs bearing photocatalytic linkers with nodes
containing open coordination sites provides two distinct approaches to realize this aim. Combining selective
radical generation with established open-shell reactivity can afford a diverse range of products such as halides,
boronic esters, and C–C bonds via Minisci and Giese reactivity. Overall, the proposed research will provide a
novel approach to the long-standing challenge of selective C(sp3)–H functionalization, enabling the efficient
conversion of simple starting materials into valuable fragments for use in drug discovery. Conducting this
research will provide thorough training in the experimental methods required to synthesize and characterize
inorganic materials, including PXRD, ICP-MS, gas adsorption, and photophysical techniques. Massachusetts
Institute of Technology, as one of the largest and most productive scientific research institutions in the world,
possesses the facilities and institutional environment required to support these studies.
项目摘要/摘要
尽管几十年来的研究致力于扩大药物化学家可获得的结构复杂性,
有机合成仍然是药物发现的时间和资源密集型组成部分。为了解决这个
挑战,合成有机化学家们专注于发明新的方法来耦合广泛可用的
构建成药物样产品,扩大了生物活性化合物的范围,
简单的先驱然而,相对较少的研究集中在增加多样性和
这些容易获得的前体的复杂性。由于少数特权反应代表了
在药物发现中进行的大多数合成步骤,提供了广泛的构建模块
因为这样的转化可以极大地扩展药物化学家可访问的化学空间。朝向
为此,C-H键的官能化方法具有革命性的合成潜力,
通过能够在普遍存在的但不局限于药物的地方引入有价值的功能,
传统上不活跃的网站。不幸的是,由于C-H键的丰富,这种方法经常受到
由于选择性差,导致异构体的纯化具有挑战性和产率降低。As a general strategy
为了促进选择性C-H官能化,拟议的研究将利用
金属有机框架(MOFs),它既可以选择性地结合小的有机分子,又可以高度稳定
能够裂解C(sp3)-H键的活性物质。通过在反应位点附近保持特定的C-H键,
选择性基于MOF孔内底物的结合姿势-而不是每一种的固有反应性
C-H键-可以决定功能化的位置。采用能够负载金属氧代的M0 F
具有底物结合接头的物质,或者,可替代地,带有具有节点的光催化接头的MOF
包含开放的配位位点提供了实现这一目标的两种不同的方法。组合选择性
具有已建立的开壳反应性的自由基生成可提供多种产物如卤化物,
硼酸酯和通过Minisci和Giese反应性的C-C键。总的来说,拟议的研究将提供一个
一种新的方法来解决长期存在的选择性C(sp3)-H官能化的挑战,使有效的
将简单的起始材料转化为用于药物发现的有价值的片段。进行这项
研究将提供综合和表征所需的实验方法的全面培训
无机材料,包括PXRD、ICP-MS、气体吸附和微物理技术。马萨诸塞州
理工学院作为世界上规模最大、生产力最高的科研机构之一,
拥有支持这些研究所需的设施和机构环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick James Sarver其他文献
Patrick James Sarver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant