Discovery and characterization of synthetic bioinformatic natural product anticancer agents
合成生物信息天然产物抗癌剂的发现和表征
基本信息
- 批准号:10639302
- 负责人:
- 金额:$ 42.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAntibioticsAntineoplastic AgentsBacteriaBacterial GenomeBioinformaticsBiological ProcessBiologyBreathingCancer cell lineChemical StructureClinicalCloningCollectionDNADataDevelopmentEnzymesFDA approvedFamilyFermentationFundingFutureGene ClusterGeneticGenetic TranscriptionGenomeGenomicsGoalsHumanIn VitroInstructionLaboratoriesLarge-Scale SequencingLeadLibrariesMalignant NeoplasmsMetagenomicsMethodologyMethodsModelingNatural HistoryNatural ProductsNaturePeptide BiosynthesisPeptidesPharmaceutical PreparationsResistanceRewardsSamplingSoilSourceStructureStudy modelsTherapeuticTranslationsantimicrobialantiproliferative agentsbioactive natural productschemical synthesiscytotoxicdesigndrug discoveryin vivolaboratory experimentmetagenomemicrobialmicrobiomemutantnext generationnovelnovel anticancer drugpeptide structurepeptide synthasepolyketidespressureprogramspublic databasescreeningsmall moleculesuccesstherapeutic development
项目摘要
Many of our most important therapeutics were inspired by bacterial small molecules (natural products, NPs).
Although microbial NPs display a wide range of bioactivities, they have offered their greatest utility as anticancer
agents and antibiotics. The incredible success of NPs as lead structures for therapeutic development is thought
to be due to their unique structural and mode of action refinement from eons of evolutionary selective pressures.
Since many drug discovery programs deprioritized NPs due to unacceptably high rediscovery rates, bioinformatic
analyses of genomic sequence data, whether from cultured bacteria or metagenomes, has revealed that the
biosynthetic diversity accessed by traditional monoculture fermentation studies represents only a small fraction
of the NPs that are actually encoded by the global microbiome. Unlocking the metabolites encoded by this large
fraction of previously inaccessible biosynthetic gene clusters (BGCs) should provide structurally and
mechanistically novel molecules that can serve as inspirations for new anticancer agents. Traditional NPs
discovery methods rely on biological processes (i.e., transcription, translation and enzymes) to convert genetic
instructions contained in bacterial genomes into novel bioactive small molecules. Unfortunately, with these
methods it has not been possible to coax laboratory grown bacteria into producing all the different NPs they are
capable of making. We have therefore developed a “biology free” discovery approach where, instead of decoding
genetic instructions using biological processes, bioinformatic algorithms are used to predict the chemical
structures produced by bacteria and then chemical synthesis is used to build these structures, which we have
called Synthetic Bioinformatic NPs (syn-BNPs). This proposal is designed to bring together advanced
bioinformatics, total chemical synthesis, and next-generation metagenomic methods to identify syn-BNP
antiproliferative agents that are inspired by BGCs which, until now, have remained hidden in the genomes of
cultured bacteria and metagenomes. Interestingly, nearly half of all drugs in clinical use today are inspired by
nonribosomal peptides (NRPs) or mixed polyketide-NRPs. Fortuitously, NRP biosynthesis is unique in that
bioinformatic algorithms have developed to the point where it is possible to predict many NRP structures from
primary data sequence alone. Concurrently with these bioinformatic advances, robust methods for synthetically
producing NRP-like structure have become simple and economical, making uncharacterized NRP BGCs model
targets for syn-BNP discovery studies and a potentially rich source of mechanistically diverse and novel
antiproliferative agents. With this in mind, in Aim 1 bioinformatic analysis of NRP BGCs found in publicly available
data bases will be used to inspire syn-BNPs that will be screened for differential antiproliferative activity across
a panel of diverse cancer lines. In Aim 2, metagenomic BGCs will be sequenced and used to inspire additional
syn-BNPs for antiproliferative activity screening. In Aim 3, antiproliferative syn-BNP hits will be mechanistically
studied and synthetically optimized to ready them for future more detailed in vitro and in vivo studies.
我们许多最重要的疗法都受到细菌小分子(天然产物,NP)的启发。
虽然微生物纳米颗粒显示出广泛的生物活性,但它们在抗癌方面提供了最大的效用
药剂和抗生素。纳米粒子作为治疗开发的主要结构的令人难以置信的成功被认为是
这是由于它们独特的结构和作用方式在进化选择压力的作用下不断完善而形成的。
由于许多药物发现计划由于不可接受的高再发现率而降低了NP的优先级,生物信息学
对基因组序列数据的分析,无论是来自培养的细菌还是宏基因组,都揭示了
通过传统的单一培养发酵研究获得的生物合成多样性仅代表一小部分
由全球微生物组编码的纳米颗粒。解开这个巨大的
一部分以前无法获得的生物合成基因簇(BGC)应该提供结构和
这些分子是机械上新颖的分子,可以作为新抗癌剂的灵感来源。传统NP
发现方法依赖于生物过程(即,转录、翻译和酶)来转化基因
将细菌基因组中包含的指令转化为新的生物活性小分子。不幸的是,有了这些
目前还不可能诱导实验室培养的细菌产生它们所需要的所有不同的NP。
有能力做。因此,我们开发了一种“无生物学”的发现方法,
遗传指令使用生物过程,生物信息学算法用于预测化学
细菌产生的结构,然后用化学合成来构建这些结构,
称为合成生物信息学纳米粒子(syn-BNPs)。该提案旨在汇集先进的
生物信息学、全化学合成和下一代宏基因组学方法来鉴定syn-BNP
抗增殖剂的灵感来自BGC,到目前为止,BGC仍然隐藏在基因组中,
培养的细菌和宏基因组。有趣的是,今天临床使用的所有药物中有近一半是受
非核糖体肽(NRP)或混合聚酮-NRP。幸运的是,NRP生物合成是独特的,
生物信息学算法已经发展到可以预测许多NRP结构的程度,
原始数据序列。与这些生物信息学进展同时,用于合成
产生NRP样结构变得简单和经济,使未表征的NRP BGC模型
syn-BNP发现研究的靶点和机制多样和新颖的潜在丰富来源,
抗增殖剂。考虑到这一点,在目标1中,对在公开可用的文献中发现的NRP BGC进行生物信息学分析。
数据库将用于激发syn-BNP,其将被筛选用于不同的抗增殖活性,
一组不同的癌症细胞系。在目标2中,将对宏基因组BGC进行测序,并用于激发额外的基因组学研究。
syn-BNP用于抗增殖活性筛选。在目标3中,抗增殖性syn-BNP命中将在机制上被抑制。
研究和综合优化,以准备他们在未来更详细的体外和体内研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEAN F BRADY其他文献
SEAN F BRADY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEAN F BRADY', 18)}}的其他基金
Synthetic environmental peptide libraries as a source of novel antibiotics
合成环境肽库作为新型抗生素的来源
- 批准号:
10394993 - 财政年份:2019
- 资助金额:
$ 42.31万 - 项目类别:
Synthetic environmental peptide libraries as a source of novel antibiotics
合成环境肽库作为新型抗生素的来源
- 批准号:
10613900 - 财政年份:2019
- 资助金额:
$ 42.31万 - 项目类别:
Discovery of Antibiotics from Soil Microbiomes Using Metagenomics
利用宏基因组学从土壤微生物组中发现抗生素
- 批准号:
9906905 - 财政年份:2017
- 资助金额:
$ 42.31万 - 项目类别:
Discovery of GPCR-active natural products and their biosynthetic genes from the human associated bacteria
从人类相关细菌中发现具有 GPCR 活性的天然产物及其生物合成基因
- 批准号:
10229230 - 财政年份:2017
- 资助金额:
$ 42.31万 - 项目类别:
Discovery of Antibiotics from Soil Microbiomes Using Metagenomics
利用宏基因组学从土壤微生物组中发现抗生素
- 批准号:
10552394 - 财政年份:2017
- 资助金额:
$ 42.31万 - 项目类别:
Discovery of GPCR-active natural products and their biosynthetic genes from the human associated bacteria
从人类相关细菌中发现具有 GPCR 活性的天然产物及其生物合成基因
- 批准号:
10198774 - 财政年份:2017
- 资助金额:
$ 42.31万 - 项目类别:
Development and application of a functional metagenomic antibiotic discovery pipeline
功能性宏基因组抗生素发现管道的开发和应用
- 批准号:
9123633 - 财政年份:2015
- 资助金额:
$ 42.31万 - 项目类别:
Development and application of a functional metagenomic antibiotic discovery pipeline
功能性宏基因组抗生素发现管道的开发和应用
- 批准号:
8932426 - 财政年份:2015
- 资助金额:
$ 42.31万 - 项目类别:
A minimally invasive synthetic bio-driven approach for natural products discovery
用于天然产物发现的微创合成生物驱动方法
- 批准号:
9102130 - 财政年份:2015
- 资助金额:
$ 42.31万 - 项目类别:
A minimally invasive synthetic bio-driven approach for natural products discovery
用于天然产物发现的微创合成生物驱动方法
- 批准号:
8867550 - 财政年份:2015
- 资助金额:
$ 42.31万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists