Variational Quantum Algorithms for Structured Lattices

结构化晶格的变分量子算法

基本信息

  • 批准号:
    EP/Y004477/1
  • 负责人:
  • 金额:
    $ 71.66万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The pursuit of classical encryption protocols that are resistant to quantum attacks is known as post-quantum cryptography (PQC). The majority of these protocols are based on lattice-based cryptography, which encrypts data using high-dimensional lattices. Lattice-based cryptography builds cryptographic primitives by utilising lattice theory and the hardness of lattice-related problems. Unlike current public-key schemes based on factoring or discrete logarithm, lattice-based cryptography appears to be resistant to quantum attacks. The shortest vector problem (SVP), which seeks the shortest non-zero vector of a given lattice, is at the heart of these protocols. Lattices with some structure, i.e. structured lattices, are typically used to improve the efficiency of these protocols. In fact, three out of the four PQC schemes recently standardized by NIST, are based on structured lattices. However, the quantum hardness of structured lattices is poorly understood.We have already made inroads into the direction of quantum algorithms for plain lattices. The ambition of this project is to advance the research in this direction to a higher level, namely, to tackle the problems of structured lattices, which underpin NIST's PQC protocols. In this project, we aim to develop variational quantum algorithms that take advantage of the structure of these lattices to solve their SVP, thereby permitting a proper quantum cryptanalysis of PQC protocols. The goal of cryptanalysis is not to jeopardize information security, but to reveal potential weaknesses of encryption protocols so that stronger security can be assured.
追求能够抵抗量子攻击的经典加密协议被称为后量子加密(PQC)。这些协议中的大多数都是基于基于格的加密,它使用高维格对数据进行加密。基于格的密码学利用格理论和格相关问题的硬度来构建密码原语。与当前基于因子分解或离散对数的公钥方案不同,基于格的密码术似乎可以抵抗量子攻击。最短向量问题(SVP)寻求给定晶格的最短非零向量,是这些协议的核心。具有一定结构的格,即结构化格,通常用于提高这些协议的效率。事实上,NIST最近标准化的四种PQC方案中有三种是基于结构化晶格的。然而,人们对结构晶格的量子硬度知之甚少。我们已经在平面晶格的量子算法方向上取得了进展。该项目的目标是将这一方向的研究推向更高的水平,即解决结构化晶格的问题,这是NIST PQC协议的基础。在这个项目中,我们的目标是开发变分量子算法,利用这些晶格的结构来解决它们的SVP,从而允许对PQC协议进行适当的量子密码分析。密码分析的目的不是危害信息安全,而是揭示加密协议的潜在弱点,从而确保更强的安全性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cong Ling其他文献

Pd Nanoparticles Capped with [CpPd(II)Cl]2 Complexes for Hydrogenation and Acid-Free Acetalization of alpha,beta-Unsaturated Aldehydes
用 [CpPd(II)Cl]2 配合物封端的 Pd 纳米颗粒用于 α,β-不饱和醛的氢化和无酸缩醛化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Sheng-Jie Zhao;Xiao Zhou;Hong-Bao Li;Kuang Liang;Liu-Bo Ma;Xiao-Xiang Fang;Tan Zhao;Cong Ling;An-Wu Xu
  • 通讯作者:
    An-Wu Xu
Secrecy gain, flatness factor, and secrecy-goodness of even unimodular lattices
单模晶格的保密增益、平坦度因子和保密性
Towards characterizing the performance of appriximate lattice decoding
Extracting Wyner's Common Information Using Polar Codes and Polar Lattices
使用极坐标码和极坐标格提取 Wyner 的公共信息
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinwen Shi;Ling Liu;Cong Ling
  • 通讯作者:
    Cong Ling
Polar Codes and Polar Lattices for the Heegard–Berger Problem
Heegard-Berger 问题的极坐标码和极坐标格
  • DOI:
    10.1109/tcomm.2018.2832618
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Jinwen Shi;Ling Liu;Deniz Gündüz;Cong Ling
  • 通讯作者:
    Cong Ling

Cong Ling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cong Ling', 18)}}的其他基金

Post-Quantum Blockchains Based on FALCON++
基于FALCON的后量子区块链
  • 批准号:
    EP/X037010/1
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Grant
Bridging the Gap Between Lattice Coding and Lattice Cryptography - Post-Quantum Cryptography
弥合晶格编码和晶格密码学之间的差距 - 后量子密码学
  • 批准号:
    EP/S021043/1
  • 财政年份:
    2019
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
  • 批准号:
    EP/Y004663/2
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Grant
Adiabatic and dynamical algorithms for quantum hardware
量子硬件的绝热和动态算法
  • 批准号:
    EP/Y005058/2
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Research Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
  • 批准号:
    2330130
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Standard Grant
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Developing Quantum Algorithms for High-Entropy Alloy Discovery
职业:开发用于高熵合金发现的量子算法
  • 批准号:
    2239216
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
  • 批准号:
    2326810
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Continuing Grant
Quantum algorithms for discrete spacetimes
离散时空的量子算法
  • 批准号:
    2882937
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Studentship
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 71.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了