QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks

QuSeC-TAQS:用于光学原子钟的新型量子算法

基本信息

  • 批准号:
    2326810
  • 负责人:
  • 金额:
    $ 175.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Optical clocks are the most accurate instruments ever realized by humankind. They have great potential for fundamental physics discovery as sensors, e.g., for low-frequency gravitational wave detection and dark matter searches. However, thus far optical clocks have generally used the same basic modality since the first atomic clocks were realized: uniform state preparation and interrogation of a sample of atoms. In contrast, the quantum information science (QIS) toolbox has developed to the point where single atoms in large arrays can be individually controlled, interrogated, and even entangled with other atoms. This project seeks to leverage QIS advances to develop new algorithms for the use of optical clocks as sensors. The team will train graduate students, undergraduate students, and postdocs in interdisciplinary research at the forefront of quantum metrology. All participants will be trained in advanced concepts regarding precision measurements, quantum sensing, and quantum algorithms. Through training in the context of cutting-edge research, this work will strengthen the quantum workforce.This project aims to realize new quantum algorithms to advance optical atomic clocks as quantum sensors for signals of interest including dark matter, gravitational waves, and as frequency and time references. Established quantum information science algorithms, such as quantum error correction, will serve as a jumping off point for the optical clock algorithms that this team will develop. This team will leverage ensembles of trapped neutral atoms and arrays of trapped ions, and develop and demonstrate new measurement protocols that maximize their sensitivity for a given atom number and sensing target, drawing inspiration from existing quantum computing algorithms. This project will advance the performance and capabilities of optical lattice clocks with multiple ensembles of neutral atoms, pioneering a new frontier in precision measurements. In parallel, this team will realize new ion traps with arrays of trapped clock ions, providing complementary approaches for algorithm development. Taken together with the development of novel clock algorithms and theoretical analyses of the expected signals from sensing targets such as various dark matter candidates, this effort will advance the sensing reach of optical clocks. The algorithms developed will also help ease the requirements for transportable optical clocks, for example by relaxing constraints on the optical clock laser system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光学钟是人类发明的最精确的仪器。作为传感器,它们在基础物理发现方面具有巨大的潜力,例如用于低频引力波探测和暗物质搜索。然而,到目前为止,光学钟一般使用相同的基本模式,因为第一个原子钟被实现:原子样品的统一状态制备和询问。相比之下,量子信息科学(QIS)工具箱已经发展到可以单独控制、询问大阵列中的单个原子,甚至可以与其他原子纠缠在一起的程度。该项目旨在利用QIS的进步来开发用于光学时钟作为传感器的新算法。该团队将在量子计量前沿的跨学科研究中培养研究生、本科生和博士后。所有参与者将接受有关精密测量,量子传感和量子算法的高级概念培训。通过在前沿研究背景下的培训,这项工作将加强量子劳动力。该项目旨在实现新的量子算法,以推进光学原子钟作为感兴趣的信号的量子传感器,包括暗物质,引力波,以及频率和时间参考。现有的量子信息科学算法,如量子纠错,将成为该团队将开发的光学时钟算法的起点。该团队将利用捕获中性原子和捕获离子阵列的集合,并开发和演示新的测量协议,最大限度地提高其对给定原子序数和传感目标的灵敏度,从现有的量子计算算法中汲取灵感。该项目将提高具有多个中性原子集成的光学晶格钟的性能和能力,开拓精密测量的新前沿。与此同时,该团队将利用被捕获的时钟离子阵列实现新的离子阱,为算法开发提供补充方法。结合新型时钟算法的发展和对来自各种暗物质候选物等传感目标的预期信号的理论分析,这一努力将推进光学时钟的传感范围。所开发的算法也将有助于减轻对可移动光学时钟的要求,例如通过放宽对光学时钟激光系统的限制。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducing the Instability of an Optical Lattice Clock Using Multiple Atomic Ensembles
  • DOI:
    10.1103/physrevx.14.011006
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
  • 通讯作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Jayich其他文献

Andrew Jayich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Jayich', 18)}}的其他基金

CAREER: Rotational Cooling of Radioactive Molecules
职业:放射性分子的旋转冷却
  • 批准号:
    2146555
  • 财政年份:
    2022
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
Developing a Radium Toolset for New Physics
开发新物理学的镭工具集
  • 批准号:
    1912665
  • 财政年份:
    2019
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
  • 批准号:
    2326628
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
  • 批准号:
    2326801
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
  • 批准号:
    2326748
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
  • 批准号:
    2326784
  • 财政年份:
    2023
  • 资助金额:
    $ 175.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了