Robust, Trapped Ultracold Atom Interferometry For Six-axis Inertial Sensing
用于六轴惯性传感的稳健、俘获超冷原子干涉仪
基本信息
- 批准号:EP/Y004728/1
- 负责人:
- 金额:$ 73.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Sensors based on quantum technology have the potential to transform a number of scientific fields, including environmental sensing, geophysics, and ecology; biology and neuroscience; gravitational wave detection; and air, land, space, and sea-based navigation. One of the key players in quantum inertial sensing, that is, the sensing of acceleration and rotation, is that of atom-based sensing, which makes use of the fact that atoms, like light, can interfere with themselves. Just like one can use conventional matter-based optics to control light waves, one can use light-based optics to control these so-called matter waves, using the light fields generated by lasers to split, reflect, and recombine clouds of atoms. The advantage with these atomic systems is that atom-based rotation sensors can be up to ten billion times more sensitive than their light-based counterparts. The challenge now, for scientists, is to develop robust, scalable quantum sensors that are able to use as much of the massive potential sensitivity advantage as possible while being easily deployable in real-world scenarios.In this project, we are using shaken lattice interferometry (SLI), where ultracold atoms are trapped in a three-dimensional optical lattice. This optical lattice is the egg-carton-like potential produced when six lasers interfere with one another, two from each of the three dimensions. When the lattice potential is phase modulated (i.e., shaken), the trapped atoms, acting as matter waves, are made to split apart, move in a predetermined way, then come back together, after which an acceleration or rotation signal can be measured.While SLI is less mature than other atom interferometry techniques, it has the advantage that the atoms remain trapped throughout the interferometry sequence. In addition, the matter-wave optics of the shaken lattice interferometer can be modified to change the sensitivity of the interferometer to signals of differing magnitude and frequency. Additionally, SLI is easily scalable to a six-axis inertial sensor capable of measuring rotation and acceleration along all three dimensions.The goal of this work is to bring SLI to maturity. That is, in close collaboration with our industry partners, ColdQuanta, Inc, we will demonstrate a robust six-axis inertial sensor based on the concept of SLI with scaling and sensitivity on par with or better than the current state-of-the-art. In addition, we will work to understand the fundamental limits of this relatively new technology, as well as whether or not it can achieve sensitivity scaling and robustness that is better than any previous device. This will lay the foundation for the development of a practical, deployable, and scalable atom-based quantum inertial sensor that has the potential to revolutionise the field of navigation.
基于量子技术的传感器有可能改变许多科学领域,包括环境传感,生物物理学和生态学;生物学和神经科学;引力波探测;以及空中,陆地,太空和海上导航。量子惯性传感的关键参与者之一,即加速度和旋转的传感,是基于原子的传感,它利用了原子像光一样可以相互干扰的事实。就像人们可以使用传统的基于物质的光学来控制光波一样,人们可以使用基于光的光学来控制这些所谓的物质波,使用激光产生的光场来分裂,反射和重组原子云。这些原子系统的优点是,基于原子的旋转传感器的灵敏度可以比基于光的传感器高出100亿倍。目前,科学家们面临的挑战是开发强大的、可扩展的量子传感器,这些传感器能够尽可能多地利用巨大的潜在灵敏度优势,同时易于部署在现实世界的场景中。在这个项目中,我们使用的是震动晶格干涉法(SLI),其中超冷原子被困在三维光学晶格中。这种光学晶格是当六个激光相互干涉时产生的类似鸡蛋盒的势能,其中每个激光来自三个维度。当晶格势被相位调制时(即,当被捕获的原子作为物质波时,被分离开,以预定的方式运动,然后重新聚集在一起,之后可以测量加速度或旋转信号。虽然SLI不如其他原子干涉测量技术成熟,但它的优点是原子在整个干涉测量序列中保持被捕获。此外,可以修改振动晶格干涉仪的物质波光学,以改变干涉仪对不同幅度和频率的信号的灵敏度。此外,SLI可以很容易地扩展到一个六轴惯性传感器,能够测量旋转和加速度沿沿着所有三个维度。这项工作的目标是使SLI成熟。也就是说,通过与我们的行业合作伙伴ColdQuanta公司的密切合作,我们将展示一种基于SLI概念的强大的六轴惯性传感器,其缩放和灵敏度与当前最先进的技术相当或更好。此外,我们将努力了解这种相对较新的技术的基本限制,以及它是否可以实现比任何先前设备更好的灵敏度缩放和鲁棒性。这将为开发实用、可部署和可扩展的基于原子的量子惯性传感器奠定基础,该传感器有可能彻底改变导航领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carrie Weidner其他文献
Is certification for pharmaceutical sales representatives necessary
药品销售代表需要认证吗
- DOI:
10.1108/17506121111172220 - 发表时间:
2011 - 期刊:
- 影响因子:1.2
- 作者:
Fadi M. Alkhateeb;Patricia Baidoo;Marija Mikulskis Cavana;Danielle Gill;A. Howell;Babak Mehraeen;Carrie Weidner - 通讯作者:
Carrie Weidner
Carrie Weidner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
粤西海域CTW(Coastal Trapped Wave)特征分析与数值模拟研究
- 批准号:40976012
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
- 批准号:
EP/Y036263/1 - 财政年份:2024
- 资助金额:
$ 73.83万 - 项目类别:
Research Grant
CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
- 批准号:
2338369 - 财政年份:2024
- 资助金额:
$ 73.83万 - 项目类别:
Continuing Grant
Hybrid ESI/MALDI mass spectrometer with trapped ion mobility spectrometry
具有捕获离子迁移谱分析功能的混合 ESI/MALDI 质谱仪
- 批准号:
507957722 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Major Research Instrumentation
Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
- 批准号:
23K13046 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the Fluids Trapped Inside Opaque Minerals of Overprinted Ore Deposits
了解叠印矿床的不透明矿物中截留的流体
- 批准号:
22KK0246 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Trapped ion clock with enhanced reliability (TICKER)
具有增强可靠性的俘获离子钟 (TICKER)
- 批准号:
EP/Y005112/1 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Research Grant
Quantum computing with trapped ions Fast, high-fidelity entanglement via optical phase control
使用捕获离子进行量子计算 通过光学相位控制实现快速、高保真纠缠
- 批准号:
2886990 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Studentship
Semiclassical distribution of quantum resonances and graph structure of classical trapped trajectories
量子共振的半经典分布和经典俘获轨迹的图结构
- 批准号:
22KJ2364 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
PIC: Charge Trapped Photonic Devices for Computing, Sensing and Sequencing Applications
PIC:用于计算、传感和排序应用的电荷捕获光子器件
- 批准号:
2315085 - 财政年份:2023
- 资助金额:
$ 73.83万 - 项目类别:
Standard Grant