Self-Motile Implantables for Advanced Neural Interfaces

用于高级神经接口的自移动植入物

基本信息

  • 批准号:
    EP/Y020294/1
  • 负责人:
  • 金额:
    $ 25.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Neural interfaces are communication bridges between the nervous system and man-made devices. Decades of innovation on biocompatible materials, device shape and structural engineering, and implanting methods has advanced the development of devices that can deliver and record signals through multiple modalities, such as electrical, chemical and optical interfaces. Despite these advancements, high-performance recording and stimulating systems with exceptional spatial resolution have not yet met the required criteria for chronic operation, which is dramatically impeded by tissue damage and complex and unpredictable foreign body responses. On-going state-of-the-art studies to alleviate this mismatch include the development of minimally invasive, multifunctional, and miniaturized devices consist of organic flexible and soft materials. By combining bioelectronics with soft robotics, we aim to develop thin film-based brain implants capable of shape morphing inside the body for an intimate interface and improved neuromodulation performance with minimal invasiveness. We will work on the identification, fabrication and characterization of biocompatible actuating materials, configuration design and shape programming of soft robots, and bioelectronics integration as well as in vitro and in vivo tests. This project will bridge the gap between two cutting-edge research fields that have thus far evolved separately: soft robotics and bioelectronics. This advance goes beyond today's existing neurotechnologies, moving a step further towards advanced neural implants that hold the potential of high-performance and long-term interaction with the nervous system. As an adjacent benefit, this work will also contribute to other biomedical tools such as catheters and drug delivery devices and practices in minimally invasive surgery, and lead to a whole new generation of biomedical devices and treatments.
神经接口是神经系统和人工设备之间的通信桥梁。几十年来,生物相容性材料、器械形状和结构工程以及植入方法的创新推动了器械的发展,这些器械可以通过多种方式(如电气、化学和光学接口)传递和记录信号。尽管取得了这些进展,但具有出色空间分辨率的高性能记录和刺激系统尚未满足慢性手术所需的标准,这受到组织损伤和复杂且不可预测的异物反应的严重阻碍。正在进行的最先进的研究,以减轻这种不匹配,包括开发微创,多功能和小型化的设备组成的有机柔性和软材料。通过将生物电子学与软机器人技术相结合,我们的目标是开发基于薄膜的大脑植入物,该植入物能够在体内变形,以获得亲密的界面,并以最小的侵入性改善神经调节性能。我们将致力于生物相容性驱动材料的识别,制造和表征,软机器人的配置设计和形状编程,生物电子集成以及体外和体内测试。该项目将弥合两个前沿研究领域之间的差距,这两个领域迄今为止分别发展:软机器人和生物电子学。这一进展超越了当今现有的神经技术,朝着先进的神经植入物又迈进了一步,这些植入物具有与神经系统进行高性能和长期相互作用的潜力。作为一个相邻的好处,这项工作也将有助于其他生物医学工具,如导管和药物输送设备和微创手术的做法,并导致全新一代的生物医学设备和治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHAOQUN DONG其他文献

CHAOQUN DONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
  • 批准号:
    2338880
  • 财政年份:
    2024
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Engineering a motile biohybrid microrobot
设计可移动的生物混合微型机器人
  • 批准号:
    2898856
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Studentship
Mechanism and Regulation of Axonemal Dynein Arm Assembly in Motile Ciliated Epithelial Cells
运动纤毛上皮细胞轴丝动力蛋白臂组装的机制和调控
  • 批准号:
    10930194
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
Development of selective isolation methods and conservation of genetic resources for elucidating the ecological distribution of the extremely rare motile actinomycetes.
开发选择性分离方法和保护遗传资源,以阐明极其罕见的运动放线菌的生态分布。
  • 批准号:
    23K05270
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Designing Motile and Chemotactic Protocells to Investigate and Exploit Cellular Collective Behaviours
设计运动和趋化原始细胞来研究和利用细胞集体行为
  • 批准号:
    BB/W009323/2
  • 财政年份:
    2023
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship
Designing Motile and Chemotactic Protocells to Investigate and Exploit Cellular Collective Behaviours
设计运动和趋化原始细胞来研究和利用细胞集体行为
  • 批准号:
    BB/W009323/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Fellowship
Impact of a Disease-Associated Dynactin Variant on Motile Phenomena in Lung Epithelial Cells
疾病相关的 Dynactin 变体对肺上皮细胞运动现象的影响
  • 批准号:
    10704306
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
LEAPS-MPS: Investigation of the Mechanism of Emergence of Collective Behavior in Motile Cilia Using Model Artificial Cilia
LEAPS-MPS:使用模型人工纤毛研究运动纤毛集体行为出现的机制
  • 批准号:
    2213371
  • 财政年份:
    2022
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Infection mechanisms of bacteriophages targeting motile bacteria
合作研究:噬菌体针对运动细菌的感染机制
  • 批准号:
    2054392
  • 财政年份:
    2021
  • 资助金额:
    $ 25.55万
  • 项目类别:
    Continuing Grant
Interrogating the function of motile ciliated cells in spinal curvature using a zebrafish model of adolescent idiopathic scoliosis
使用青少年特发性脊柱侧凸的斑马鱼模型探讨活动纤毛细胞在脊柱弯曲中的功能
  • 批准号:
    10395419
  • 财政年份:
    2021
  • 资助金额:
    $ 25.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了