Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa

通过量子流体浴消除量子电路中的噪声 - SQuBa

基本信息

  • 批准号:
    EP/Y022637/1
  • 负责人:
  • 金额:
    $ 171.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum computers will have a transformative impact by solving hitherto intractable problems in science and enable multiple innovations across society and the economy, derived from the exponential increase in computing power. Ultimately performance and ease of implementation are primarily limited by the quality of the basic building block; the qubit. Furthermore quantum sensors will lead to a new era of discovery in fundamental science, due to step changes in detector sensitivity. Superconducting qubits provide a scalable technology, strongly favoured by industry. However, quantum states are very fragile, making the qubit highly sensitive to its environment. This includes spurious sources of energy (heat) and the quantum bath of material defects. These notoriously ubiquitous defects can broadly be categorised as two types: surface spins and two-level system defects (TLS). Both are a source of noise and decoherence in circuits and constitute a significant roadblock to technological applications. The ability to both adequately cool circuits and eliminate the deleterious effects of defects, the nature of which remains poorly understood after decades of study, are the two major obstacles towards improved coherence and large-scale quantum computing. The central research hypothesis behind this proposal is that immersion of the quantum circuit in a quantum fluid bath (for example liquid helium-three) presents an elegant, scalable, solution to both these problems. It is motivated by striking results we obtained on a simple quantum circuit (superconducting resonator) immersed in liquid helium-three.The overarching objective of this project is a systematic investigation of the suppression of decoherence in superconducting quantum circuits (qubits and resonators) cooled through immersion in a quantum fluid bath, and to achieve a fundamental understanding of its origin via the interaction of the circuit and its environment to the quantum fluids. This will be combined with strain and electric field tuning to pin-point TLS, enabling new circuit designs to optimally draw upon immersion cooling for enhanced coherence. The coupling between qubit and the quantum fluid bath provides a new pathway to mitigate decoherence. In contrast over the last decades, mitigation of decoherence by TLS through device design has yielded most of the improvements in coherence times. The materials science of eliminating TLS is a major future challenge, now receiving much attention, here with a completely new tool at our disposal. Thus far the relative stagnation in coherence times has driven an approach to quantum computing with error correction in which many physical qubits are required to realise a single logical qubit. Furthermore, we aim to identify the optimal quantum bath conditions at which to operate circuits for enhanced performance. Through engagement with the theoretical physics community, we aim to develop testable hypotheses for the quantum fluid-quantum circuit interaction, to help guide the experimental programme towards most efficiently achieving the main objective: a step-change in qubit performance. We aim to significantly advance the understanding of properties of amorphous dielectrics in quantum circuits (nature of TLS and their interactions), in particular on surfaces. Finally, we will investigate the feasibility of quantum fluid immersion scalability for quantum computers, with a view to accelerate the impact of our fundamental research.In this work quantum circuits meet quantum fluids, and much fundamental work remains to unpick the underlying mechanisms at play. The promise of performance optimisation lies in the tunability of the quantum fluid and its interface with the quantum circuit. We therefore believe that the success of this project will trigger a step-change in the progress towards fault-tolerant quantum computing.
量子计算机将通过解决迄今难以解决的科学问题产生变革性的影响,并使计算能力指数级增长带来的社会和经济领域的多重创新成为可能。归根结底,性能和实现的简易性主要受到基本构建块--量子位的质量的限制。此外,由于探测器灵敏度的逐步变化,量子传感器将引领基础科学发现的新时代。超导量子比特提供了一种可扩展的技术,受到了工业界的强烈青睐。然而,量子态非常脆弱,这使得量子比特对其环境高度敏感。这包括虚假的能源(热)和材料缺陷的量子浴。这些臭名昭著的普遍存在的缺陷可以大致分为两类:表面自旋和二能级系统缺陷(TLS)。这两者都是电路中噪声和消相干的来源,并构成了技术应用的重大障碍。能够充分冷却电路和消除缺陷的有害影响,是提高相干和大规模量子计算的两大障碍。经过几十年的研究,人们对缺陷的性质仍然知之甚少。这一提议背后的中心研究假设是,将量子电路浸入量子流体浴(例如液氦-3)中,为这两个问题提供了一种优雅的、可扩展的解决方案。这个项目的主要目的是系统地研究通过浸泡在量子流体浴中冷却的超导量子电路(量子比特和谐振器)中的退相干抑制,并通过电路及其环境与量子流体的相互作用来获得对其起源的基本理解。这将与应变和电场调谐相结合,以达到点状TLS,使新的电路设计能够最佳地利用浸没冷却来增强一致性。量子比特与量子流体浴的耦合为缓解退相干提供了一条新的途径。相比之下,在过去的几十年里,通过器件设计来缓解TLS的消相干带来了大部分相干时间的改善。消除TLS的材料科学是未来的一个主要挑战,现在受到了极大的关注,这里有一种全新的工具可供我们使用。到目前为止,相干时间的相对停滞推动了一种具有纠错功能的量子计算方法,在这种方法中,需要许多物理量子比特来实现单个逻辑量子比特。此外,我们的目标是确定运行电路以增强性能的最佳量子浴条件。通过与理论物理界的接触,我们的目标是为量子流体-量子电路相互作用开发可测试的假说,以帮助指导实验计划最有效地实现主要目标:量子比特性能的阶跃变化。我们的目标是显著提高对量子电路中非晶介电体的性质(TLS的性质及其相互作用)的理解,特别是在表面上。最后,我们将研究量子流体浸入可伸缩性用于量子计算机的可行性,以期加速我们的基础研究的影响。在这项工作中,量子电路与量子流体相遇,许多基础性工作仍有待解开发挥作用的潜在机制。性能优化的前景在于量子流体及其与量子电路的界面的可调性。因此,我们相信,该项目的成功将引发容错量子计算进展的阶段性变化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Saunders其他文献

Bodies, organs and saving lives: old respects and new dilemmas
  • DOI:
    10.7861/clinmedicine.9-6-549
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    John Saunders
  • 通讯作者:
    John Saunders
Reconciling the maintenance of on-field success with off-field player development: A case study of a club culture within the Australian Football League
  • DOI:
    10.1016/j.psychsport.2014.11.009
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Pink;John Saunders;Justine Stynes
  • 通讯作者:
    Justine Stynes
Sleeve-to-bypass conversion vs. sleeve-with-adjuvant GLP-1 receptor agonists: an academic multicenter retrospective study
  • DOI:
    10.1007/s00464-025-11942-8
  • 发表时间:
    2025-07-21
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Avery Brown;Helena Sergent;Alexander Hien Vu;Helen Liu;Jason Fisher;Eduardo Somoza;Tony Mei;Jeffrey Lipman;Julia Park;Patricia Chui;John Saunders;Marina Kurian;Loic Tchokouani;Babak Orandi;George Ferzli;Karan Chhabra;Christine Ren-Fielding;Manish Parikh;Megan Jenkins
  • 通讯作者:
    Megan Jenkins
Long nanomechanical resonators with circular cross-section
具有圆形横截面的长纳米机械谐振器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Autti;A. Casey;Marie Connelly;N. Darvishi;P. Franchini;James Gorman;Richard P. Haley;P. J. Heikkinen;Ashlea Kemp;E. Leason;J. March;Jocelyn Monroe;Theo Noble;George R. Pickett;J. Prance;X. Rojas;Tineke Salmon;John Saunders;Jack Slater;Robert Smith;Michael D. Thompson;S. West;Luke Whitehead;V. Zavjalov;Kuang Zhang;D. Zmeev
  • 通讯作者:
    D. Zmeev
A survey of current anticoagulation patient education practices and development
  • DOI:
    10.1016/j.thromres.2021.10.003
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aubrey E. Jones;John Saunders;Sara R. Vazquez;Angela Fagerlin;Daniel M. Witt
  • 通讯作者:
    Daniel M. Witt

John Saunders的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Saunders', 18)}}的其他基金

Topological mesoscopic superfluidity of 3He
3He的拓扑介观超流性
  • 批准号:
    EP/R04533X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
Topological superfluids under engineered nanofluidic confinement: new order parameters and exotic excitations
工程纳米流体约束下的拓扑超流体:新序参数和奇异激发
  • 批准号:
    EP/J022004/1
  • 财政年份:
    2012
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
Quantum Phase Transitions and Quantum Criticality in Helium Films
氦薄膜中的量子相变和量子临界性
  • 批准号:
    EP/H048375/1
  • 财政年份:
    2010
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
ULT2008; Frontiers of Low Temperature Physics
超导2008;
  • 批准号:
    EP/G022119/1
  • 财政年份:
    2008
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
Generation of Differentials in the Positional Significance Of Limb-Bud Cells
肢芽细胞位置意义差异的产生
  • 批准号:
    7617751
  • 财政年份:
    1976
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Standard Grant

相似国自然基金

基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
cGAS-STING激活IFN1反应介导噪声性耳蜗损伤机制研究
  • 批准号:
    82371152
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
新一代超声速客机起降阶段增升装置气动噪声产生机理及控制方法研究(NOISE)
  • 批准号:
    12261131502
  • 批准年份:
    2022
  • 资助金额:
    105.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
介观输运中量子涨落性质的研究
  • 批准号:
    10347003
  • 批准年份:
    2003
  • 资助金额:
    8.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Silencing the noise in quantum circuits by a Quantum fluid Bath - SQuBa
通过量子流体浴消除量子电路中的噪声 - SQuBa
  • 批准号:
    EP/Y022289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Research Grant
A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
  • 批准号:
    10761609
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
  • 批准号:
    10731255
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Quantum dynamics and noise in frustrated magnetic materials
受挫磁性材料中的量子动力学和噪声
  • 批准号:
    2888585
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Studentship
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
  • 批准号:
    23K17749
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Investigation of Quantum Noise Reduction Method using Quantum Locking with Optical Spring for Space Gravitational Wave Detector DECIGO
空间引力波探测器DECIGO光学弹簧量子锁定量子降噪方法研究
  • 批准号:
    23KJ1121
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
  • 批准号:
    2326837
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Standard Grant
Development of a combined Gamma/Positron system for molecular imaging of the human brain at sub-500 micron spatial resolution
开发伽玛/正电子组合系统,用于以亚 500 微米空间分辨率对人脑进行分子成像
  • 批准号:
    10722205
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
Development of ultra-low-noise amplifier using spin maser in diamond for microwave quantum technologies
使用金刚石中的自旋微波激射器开发用于微波量子技术的超低噪声放大器
  • 批准号:
    23KJ2135
  • 财政年份:
    2023
  • 资助金额:
    $ 171.95万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了