Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings

自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发

基本信息

  • 批准号:
    10723802
  • 负责人:
  • 金额:
    $ 37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-11 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary The long-term objective of this project is to develop a revolutionary quantum mechanical solid-state magnetometer designed to non-invasively detect femtoTesla (fT) scale magnetic fields derived from the brain’s electrical activities during natural human experiences. The project has been designed to address the vision of the NIH Brain Initiative: Transformative Brain Non-invasive Imaging Technology Development. The core component of the magnetometer is a quantum-based magnetic tunnel junction (MTJ), a nanoscale sensing device with potentially unprecedented sensitivity and performance. Through a series of steps and interdisciplinary collaboration, this project is expected to increase the sensitivity of the current MTJs by several orders of magnitude and to develop triaxial MTJ sensors capable of recording the brain's magnetic fields with the highest information density. Once the desired sensitivity is achieved, the project will build a whole-head 300-channel magnetoencephalographic (MEG) system based on MTJs, which can operate fully untethered, without the need for an expensive magnetically shielded room or nulling coils. By design, the sensors will be immune to natural head motion, further enabling the system to function in natural environment. The project will address several challenges in designing and producing sensors that can detect magnetic fields as low as 50 fT. First, the project will improve the detectability of current prototype sensors by several orders of magnitude by using a series of innovative approaches in sensor design, atomic engineering, fabrication, and noise reduction. Second, the project will design and package triaxial sensors that can simultaneously measure tangential and radial magnetic fields. Third, the project will reduce the size of the sensors by more than five times compared to other technologies, so that more sensors can be implemented on a full-head helmet to improve spatial resolution and localization. Finally, and importantly, the project will increase the field dynamic range of the sensors over the technologies based on OPM (optically pumped magnetometer) and SQUID (superconducting quantum interference device), so that the MTJ-MEG system can operate without the need of magnetic shielding to allow real-world applications. Once these groundbreaking MTJ sensors are developed, the project will integrate the MTJ-MEG system architecture and make it available for verifying performance versus competing technologies. The project will use the MTJ-MEG system to assess brain related signals during sensory stimulation, cognitive processing, and motor actions. If successful, this project will develop a transformative MTJ-MEG system with unpresented levels of performance to produce a dynamic picture of the brain under natural settings covering the whole lifespan.
项目摘要 该项目的长期目标是开发一种革命性的量子力学固态 磁力计设计用于非侵入性地检测来自大脑的毫微微特斯拉(fT)规模的磁场, 人类自然体验中的电活动。该项目旨在实现以下愿景: 美国国立卫生研究院脑倡议:变革性脑非侵入性成像技术的发展。核心 磁力计的组件是基于量子的磁性隧道结(MTJ),即纳米级感测元件。 具有潜在的前所未有的灵敏度和性能的设备。通过一系列的步骤, 通过跨学科的合作,该项目预计将提高目前MTJ的灵敏度, 数量级,并开发能够记录大脑磁场的三轴MTJ传感器, 最高的信息密度。一旦达到所需的灵敏度,该项目将建立一个完整的头部 300-通道脑磁图(MEG)系统的基础上的MTJ,它可以完全不受约束地工作, 而不需要昂贵的磁屏蔽室或调零线圈。根据设计,传感器将 不受自然头部运动的影响,进一步使系统能够在自然环境中工作。该项目将 解决了在设计和生产能够检测低至50%的磁场的传感器方面的几个挑战 英尺首先,该项目将使目前原型传感器的可探测性提高几个数量级 通过在传感器设计、原子工程、制造和噪声方面采用一系列创新方法, 还原第二,该项目将设计和包装三轴传感器,可以同时测量 切向和径向磁场。第三,该项目将传感器的尺寸减少五个以上 与其他技术相比,这一技术的应用范围更广,因此可以在全头盔上安装更多的传感器, 提高空间分辨率和定位。最后,重要的是,该项目将增加现场动态 基于OPM(光泵磁力计)和SQUID技术的传感器范围 (超导量子干涉装置),使得MTJ-MEG系统可以在不需要 磁屏蔽,以允许现实世界的应用。一旦这些突破性的MTJ传感器被开发出来, 该项目将整合MTJ-MEG系统体系结构,并使其可用于验证性能 与竞争技术的对比。该项目将使用MTJ-MEG系统来评估大脑相关信号 在感觉刺激、认知处理和运动动作期间。如果成功,该项目将开发一个 变革性的MTJ-MEG系统与未呈现的性能水平,以产生一个动态的图片, 大脑在自然环境下覆盖整个生命周期。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEROME N SANES其他文献

JEROME N SANES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEROME N SANES', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10630554
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
COBRE Center for Central Nervous System Function
COBRE 中枢神经系统功能中心
  • 批准号:
    10630553
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
Pilot Projects Program
试点项目计划
  • 批准号:
    10630556
  • 财政年份:
    2023
  • 资助金额:
    $ 37万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10246486
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
Center for Central Nervous System Function
中枢神经系统功能中心
  • 批准号:
    10475694
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10475708
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
COBRE Center for Central Nervous System Function
COBRE 中枢神经系统功能中心
  • 批准号:
    8914005
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
COBRE Center for Central Nervous System Function
COBRE 中枢神经系统功能中心
  • 批准号:
    8721442
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
COBRE Center for Central Nervous System Function
COBRE 中枢神经系统功能中心
  • 批准号:
    9118776
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:
COBRE Center for Central Nervous System Function
COBRE 中枢神经系统功能中心
  • 批准号:
    8432159
  • 财政年份:
    2013
  • 资助金额:
    $ 37万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了