GANCAT: Generative Adversarial Networks for CATegorization
GANCAT:用于分类的生成对抗网络
基本信息
- 批准号:EP/Y026489/1
- 负责人:
- 金额:$ 23.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When choosing experimental stimuli, cognitive scientists often face a tension between experimental control and ecological validity. While simple stimuli provide rigorous control, their lack of complexity leaves an explanatory gap between laboratory and real-life conditions. Generative Adversarial Networks for CATegorization (GANCAT) helps to bridge this gap by developing methods to use a novel machine-learning technique, Generative Adversarial Networks (GANs) in the generation of complex, yet fully controllable visual stimuli. The methods developed by GANCAT will allow cognition researchers to create large numbers of naturalistic stimuli varying across experimentally relevant properties. As such, GANCAT aligns with the European Commission's plan to achieve Excellence in AI, by encouraging AI uptake and ensuring that AI systems work for the people. GANCAT's research programme combines state-of-the-art deep-learning techniques and behavioural methods for the study of categorisation, psychological similarity, and attention. First, GANCAT compares the categorisation of complex stimuli (histology samples) as supported by real or GAN-generated samples. Second, GANCAT couples convolutional neural networks to derive humanlike judgments of similarity for GAN-generated samples and uses those judgments to identify the mapping between GAN inputs and the generation of samples that vary across psychologically meaningful dimensions. Finally, GANCAT develops methods that allow control over the visual saliency of the features present in GAN-generated stimuli and uses those methods in the development of adaptive learning algorithms that expedite attentional learning. GANCAT does not only help to bridge the existing knowledge gap between the categorisation of simple and complex visual stimuli, but it also puts special effort into sharing its tools with the research community, to persuade cognitive scientists to welcome the complexity of realistic stimuli in their research programmes.
在选择实验刺激时,认知科学家经常面临实验控制和生态效度之间的紧张关系。虽然简单的刺激提供了严格的控制,但它们缺乏复杂性,在实验室和现实生活条件之间留下了解释性的差距。用于CATegorization的生成对抗网络(GANCAT)通过开发使用新型机器学习技术生成对抗网络(GANs)生成复杂但完全可控的视觉刺激的方法来帮助弥合这一差距。GANCAT开发的方法将允许认知研究人员创建大量的自然刺激,这些刺激在实验相关属性中有所不同。因此,GANCAT与欧盟委员会的计划保持一致,通过鼓励人工智能的采用并确保人工智能系统为人们服务来实现卓越的人工智能。GANCAT的研究项目结合了最先进的深度学习技术和行为方法,用于研究分类,心理相似性和注意力。首先,GANCAT比较了由真实的或GAN生成的样本支持的复杂刺激(组织学样本)的分类。其次,GANCAT结合卷积神经网络来获得GAN生成样本的相似性判断,并使用这些判断来识别GAN输入与样本生成之间的映射,这些样本在心理上有意义的维度上各不相同。最后,GANCAT开发了允许控制GAN生成的刺激中存在的特征的视觉显着性的方法,并将这些方法用于开发加速注意力学习的自适应学习算法。GANCAT不仅有助于弥合简单和复杂视觉刺激分类之间的现有知识差距,而且还特别努力与研究界分享其工具,以说服认知科学家在其研究计划中欢迎现实刺激的复杂性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Teufel其他文献
Christoph Teufel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SBIR Phase I: High Fidelity Climate Simulation Powered by Generative Adversarial Networks
SBIR 第一阶段:由生成对抗网络提供支持的高保真气候模拟
- 批准号:
2335370 - 财政年份:2024
- 资助金额:
$ 23.84万 - 项目类别:
Standard Grant
Pure transformer encoder-based generative adversarial networks for molecular generation
用于分子生成的基于纯变压器编码器的生成对抗网络
- 批准号:
23KF0063 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SOLARIS : Strengthening democratic engagement through value based generative adversarial networks
SOLARIS:通过基于价值的生成对抗网络加强民主参与
- 批准号:
10046757 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
EU-Funded
Generative adversarial networks for demographic inferences of nonmodel species from genomic data
根据基因组数据对非模型物种进行人口统计推断的生成对抗网络
- 批准号:
NE/X009637/1 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Research Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Continuing Grant
Generative Adversarial Networks for MRI-driven Radiation Therapy
用于 MRI 驱动放射治疗的生成对抗网络
- 批准号:
489415 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Operating Grants
Latent Space Search for Adversarial Generative Networks for Sensitivity Quantification of Skilled Inspectors
对抗性生成网络的潜在空间搜索,用于熟练检查员的灵敏度量化
- 批准号:
23K11283 - 财政年份:2023
- 资助金额:
$ 23.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructing Highly Accurate Supervised Outlier Detection Method by Quasiconformal Extension and Generative Adversarial Networks
通过拟共形扩展和生成对抗网络构建高精度监督异常值检测方法
- 批准号:
22K12050 - 财政年份:2022
- 资助金额:
$ 23.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 23.84万 - 项目类别:
Alliance Grants
Understanding, improving, and extending Generative Adversarial Networks (GANs)
理解、改进和扩展生成对抗网络 (GAN)
- 批准号:
546493-2020 - 财政年份:2022
- 资助金额:
$ 23.84万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral