Information Theory for Distributed AI (INFORMED-AI)
分布式人工智能信息论(INFORMED-AI)
基本信息
- 批准号:EP/Y028732/1
- 负责人:
- 金额:$ 980.06万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) is on the verge of widespread deployment in ways that will impact our everyday lives. It might do so in the form of self-driving cars or of navigation systems optimising routes on the basis of real-time traffic information. It might do so through smart homes, in which usage of high-power devices is timed intelligently based on real- time forecasts of renewable generation. It might do so by automatically coordinating emergency vehicles in the event of a major incident, natural or man-made, or by coordinating swarms of small robots collectively engaged in some task, such as search-and-rescue. Much of the research on AI to date has focused on optimising the performance of a single agent carrying out a single well-specified task. There has been little work so far on emergent properties of systems in which large numbers of such agents are deployed, and the resulting interactions. Such interactions could end up disturbing the environments for which the agents have been optimised. For instance, if a large number of self-driving cars simultaneously choose the same route based on real-time information, it could overload roads on that route. If a large number of smart homes simultaneously switch devices on in response to an increase in wind energy generation, it could destabilise the power grid. If a large number of stock-trading algorithmic agents respond similarly to new information, it could destabilise financial markets. Thus, the emergent effects of interactions between autonomous agents inevitably modify their operating environment, raising significant concerns about the predictability and robustness of critical infrastructure networks. At the same time, they offer the prospect of optimising distributed AI systems to take advantage of cooperation, information sharing, and collective learning. The key future challenge is therefore to design distributed systems of interacting AIs that can exploit synergies in collective behaviour, while being resilient to unwanted emergent effects. Biological evolution has addressed many such challenges, with social insects such as ants and bees being an example of highly complex and well-adapted responses emerging at the colony level from the actions of very simple individual agents! The goal of this project is to develop the mathematical foundations for understanding and exploiting the emergent features of complex systems composed of relatively simple agents. While there has already been considerable research on such problems, the novelty of this project is in the use of information theory to study fundamental mathematical limits on learning and optimisation in such systems. Information theory is a branch of mathematics that is ideally suited to address such questions. Insights from this study will be used to inform the development of new algorithms for artificial agents operating in environments composed of large numbers of interacting agents. The project will bring together mathematicians working in information theory, network science and complex systems with engineers and computer scientists working on machine learning, AI and robotics. The aim goal is to translate theoretical insights into algorithms that are deployed onreal world applications real systems; lessons learned from deploying and testing the algorithms in interacting systems will be used to refine models and algorithms in a virtuous circle.
人工智能(AI)即将以影响我们日常生活的方式广泛部署。它可能以自动驾驶汽车或导航系统的形式实现这一目标,导航系统可以根据实时交通信息优化路线。它可以通过智能家居来实现这一点,在智能家居中,高功率设备的使用是根据可再生能源发电的真实的预测智能地定时的。它可以通过在发生重大事故(自然或人为)时自动协调应急车辆,或者通过协调集体从事某些任务(如搜索和救援)的小型机器人群来实现这一点。迄今为止,大部分关于人工智能的研究都集中在优化单个智能体执行单个指定任务的性能上。到目前为止,很少有工作的紧急性质的系统中部署了大量这样的代理,以及由此产生的相互作用。这种相互作用最终可能会扰乱代理人已经优化的环境。例如,如果大量自动驾驶汽车根据实时信息同时选择同一条路线,那么这条路线上的道路可能会超载。如果大量智能家居同时开启设备以应对风能发电量的增加,可能会破坏电网的稳定。如果大量股票交易算法代理对新信息做出类似的反应,可能会破坏金融市场的稳定。因此,自主代理之间的互动的紧急影响不可避免地改变他们的操作环境,提高了重要的基础设施网络的可预测性和鲁棒性的关注。与此同时,它们提供了优化分布式人工智能系统的前景,以利用合作、信息共享和集体学习。因此,未来的关键挑战是设计交互式AI的分布式系统,这些系统可以利用集体行为中的协同作用,同时对不必要的紧急影响具有弹性。生物进化已经解决了许多这样的挑战,蚂蚁和蜜蜂等社会性昆虫就是一个例子,它们从非常简单的个体行为中,在殖民地水平上产生了高度复杂和适应良好的反应!该项目的目标是发展数学基础,用于理解和利用由相对简单的代理组成的复杂系统的紧急特征。虽然已经有相当多的研究,这些问题,这个项目的新颖之处是在使用信息理论来研究基本的数学限制在这样的系统中的学习和优化。信息论是数学的一个分支,非常适合解决这些问题。从这项研究的见解将被用来通知人工代理在由大量的交互代理的环境中运行的新算法的发展。该项目将汇集信息理论,网络科学和复杂系统的数学家,以及机器学习,人工智能和机器人技术的工程师和计算机科学家。目标是将理论见解转化为部署在真实的世界应用程序真实的系统上的算法;从部署和测试交互系统中的算法中吸取的经验教训将用于在良性循环中改进模型和算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sidharth Jaggi其他文献
Sidharth Jaggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Explaining the Architecture of the Human Sensorimotor System Using Distributed Control Theory
使用分布式控制理论解释人类感觉运动系统的架构
- 批准号:
557385-2021 - 财政年份:2022
- 资助金额:
$ 980.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2022
- 资助金额:
$ 980.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Bridging the gap between theory and practice for distributed graph algorithms
弥合分布式图算法理论与实践之间的差距
- 批准号:
21KK0204 - 财政年份:2022
- 资助金额:
$ 980.06万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Towards a theory of smoothed analysis for distributed computing
走向分布式计算的平滑分析理论
- 批准号:
21K17703 - 财政年份:2021
- 资助金额:
$ 980.06万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approximation and coding theory techniques for distributed machine learning
分布式机器学习的近似和编码理论技术
- 批准号:
559010-2021 - 财政年份:2021
- 资助金额:
$ 980.06万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Explaining the Architecture of the Human Sensorimotor System Using Distributed Control Theory
使用分布式控制理论解释人类感觉运动系统的架构
- 批准号:
557385-2021 - 财政年份:2021
- 资助金额:
$ 980.06万 - 项目类别:
Postgraduate Scholarships - Doctoral
CIF: Small: Timing Optimization Over Random Network Asynchrony - Theory And Distributed Algorithms
CIF:小:随机网络异步的时序优化 - 理论和分布式算法
- 批准号:
2008527 - 财政年份:2020
- 资助金额:
$ 980.06万 - 项目类别:
Standard Grant
MLWiNS: Optimization and Coding Theory for Fast and Robust Wireless Distributed Learning
MLWiNS:快速、稳健的无线分布式学习的优化和编码理论
- 批准号:
2003035 - 财政年份:2020
- 资助金额:
$ 980.06万 - 项目类别:
Standard Grant
Spreading the Word: The Theory of Distributed Representations in Speech and Natural Language Processing
传播信息:语音和自然语言处理中的分布式表示理论
- 批准号:
RGPIN-2015-04069 - 财政年份:2019
- 资助金额:
$ 980.06万 - 项目类别:
Discovery Grants Program - Individual
Spreading the Word: The Theory of Distributed Representations in Speech and Natural Language Processing
传播信息:语音和自然语言处理中的分布式表示理论
- 批准号:
RGPIN-2015-04069 - 财政年份:2018
- 资助金额:
$ 980.06万 - 项目类别:
Discovery Grants Program - Individual