MLWiNS: Optimization and Coding Theory for Fast and Robust Wireless Distributed Learning
MLWiNS:快速、稳健的无线分布式学习的优化和编码理论
基本信息
- 批准号:2003035
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless distributed learning systems can enable a variety of new applications including industrial automation, semantic learning, autonomous driving, health-care applications, etc. While wireless distributed learning brings about new opportunities, it faces two major challenges that severely limit its efficiency, reliability, and scalability: (1) Network heterogeneity, which is due to varying computational capabilities of edge devices. This challenge, also known as Straggler bottleneck, incurs large delays and failures due to computing nodes that are significantly slower than the rest; and (2) Communication Bottleneck, which is due to the massive amounts of raw or processed data that must be moved around the network. To tackle these bottlenecks, this project proposes techniques from coding theory and optimization theory to develop distributed learning algorithms with strong theoretical guarantees and empirical performance. Wireless distributed learning systems are driven by scaling out computations across many wireless edge nodes. There are, however, two major systems bottlenecks that arise: (1) Straggler Delay Bottleneck, which is due to the latency in waiting for slowest nodes to finish their tasks; (2) Data Shuffling Bottleneck, which is due to the massive amounts of data that must be moved among nodes. Moreover, there are privacy concerns about sharing sensitive local data, as well as vulnerabilities to adversarial attacks. This proposal aims to develop novel techniques from coding theory and optimization theory to tackle the mentioned bottlenecks and concerns. The project develops new "coded computing" algorithms for robust gradient aggregation, as well as new optimization algorithms for distributed learning. These algorithms are then used in two network settings to develop communication-efficient, straggler-resilient, and robust distributed learning frameworks: (i) a collaborative setting where a learning task is allocated to multiple edge nodes of the network. In this setting, data points can be encoded and offloaded to the edge nodes to provide resiliency against system bottlenecks; (ii) a federated setting where data points are gathered locally at edge devices and have to remain local due to privacy concerns.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线分布式学习系统可以实现各种新的应用,包括工业自动化、语义学习、自动驾驶、医疗保健应用等。虽然无线分布式学习带来了新的机遇,但它面临着两大挑战,严重限制了它的效率、可靠性和可扩展性:(1)网络异质性,这是由于边缘设备的计算能力不同造成的。这种挑战,也被称为离散瓶颈,由于计算节点比其他节点慢得多,会导致大量延迟和故障;(2)通信瓶颈,这是由于大量的原始或处理过的数据必须在网络上移动。为了解决这些瓶颈,本项目提出了编码理论和优化理论的技术,以开发具有强大理论保证和经验性能的分布式学习算法。无线分布式学习系统是由跨多个无线边缘节点的扩展计算驱动的。然而,出现了两个主要的系统瓶颈:(1)离散延迟瓶颈,这是由于等待最慢节点完成任务的延迟;(2)数据变换瓶颈,这是由于大量数据必须在节点之间移动。此外,共享敏感的本地数据还存在隐私问题,以及对抗性攻击的脆弱性。本提案旨在从编码理论和优化理论发展新技术来解决上述瓶颈和问题。该项目开发了用于鲁棒梯度聚合的新“编码计算”算法,以及用于分布式学习的新优化算法。然后在两种网络设置中使用这些算法来开发通信高效,离散弹性和健壮的分布式学习框架:(i)将学习任务分配给网络的多个边缘节点的协作设置。在这种情况下,数据点可以编码并卸载到边缘节点,以提供针对系统瓶颈的弹性;(ii)联邦设置,其中数据点在边缘设备上本地收集,并且由于隐私问题必须保持本地。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CodedReduce: A Fast and Robust Framework for Gradient Aggregation in Distributed Learning
- DOI:10.1109/tnet.2021.3109097
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
- 通讯作者:Amirhossein Reisizadeh;Saurav Prakash;Ramtin Pedarsani;A. Avestimehr
Robust Federated Learning: The Case of Affine Distribution Shifts
- DOI:
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Farzan Farnia;Ramtin Pedarsani;A. Jadbabaie
- 通讯作者:Amirhossein Reisizadeh;Farzan Farnia;Ramtin Pedarsani;A. Jadbabaie
Provably Private Distributed Averaging Consensus: An Information-Theoretic Approach
- DOI:10.1109/tit.2023.3300711
- 发表时间:2022-02
- 期刊:
- 影响因子:2.5
- 作者:Mohammad Fereydounian;Aryan Mokhtari;Ramtin Pedarsani;Hamed Hassani
- 通讯作者:Mohammad Fereydounian;Aryan Mokhtari;Ramtin Pedarsani;Hamed Hassani
Asymptotic Behavior of Adversarial Training in Binary Linear Classification
二元线性分类中对抗训练的渐近行为
- DOI:10.1109/isit50566.2022.9834717
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Taheri, Hossein;Pedarsani, Ramtin;Thrampoulidis, Christos
- 通讯作者:Thrampoulidis, Christos
Straggler-Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Heterogeneity
- DOI:10.1109/jsait.2022.3205475
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Amirhossein Reisizadeh;Isidoros Tziotis;Hamed Hassani;Aryan Mokhtari;Ramtin Pedarsani
- 通讯作者:Amirhossein Reisizadeh;Isidoros Tziotis;Hamed Hassani;Aryan Mokhtari;Ramtin Pedarsani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramtin Pedarsani其他文献
Asynchronous and noncoherent neighbor discovery for the IoT using sparse-graph codes
使用稀疏图代码的物联网异步和非相干邻居发现
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kabir Chandrasekher;Kangwook Lee;P. Kairouz;Ramtin Pedarsani;K. Ramchandran - 通讯作者:
K. Ramchandran
Control and Management of Urban Traffic Networks with Mixed Autonomy
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:8.7
- 作者:
Ramtin Pedarsani - 通讯作者:
Ramtin Pedarsani
Optimality of Least-squares for Classification in Gaussian-Mixture Models
高斯混合模型中分类的最小二乘最优性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hossein Taheri;Ramtin Pedarsani;Christos Thrampoulidis - 通讯作者:
Christos Thrampoulidis
Capacity-approaching PhaseCode for low-complexity compressive phase retrieval
用于低复杂度压缩相位检索的接近容量的 PhaseCode
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Ramtin Pedarsani;Kangwook Lee;K. Ramchandran - 通讯作者:
K. Ramchandran
Robust scheduling for flexible processing networks
灵活处理网络的鲁棒调度
- DOI:
10.1017/apr.2017.14 - 发表时间:
2016 - 期刊:
- 影响因子:1.2
- 作者:
Ramtin Pedarsani;J. Walrand;Y. Zhong - 通讯作者:
Y. Zhong
Ramtin Pedarsani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramtin Pedarsani', 18)}}的其他基金
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
- 批准号:
2342253 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
- 批准号:
2236483 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Mixed-Autonomy Traffic Networks: Routing Games and Learning Human Choice Models
合作研究:混合自主交通网络:路由博弈和学习人类选择模型
- 批准号:
1952920 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: A Systematic Approach to Adversarial Machine Learning: Sparsity-based Defenses and Locally Linear Attacks
CIF:小型:对抗性机器学习的系统方法:基于稀疏性的防御和局部线性攻击
- 批准号:
1909320 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: CIF: Next-Generation Group Testing for Neighbor Discovery in the IoT via Sparse-Graph Codes
CRII:CIF:通过稀疏图代码在物联网中进行邻居发现的下一代组测试
- 批准号:
1755808 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CIF: Small: Coding-theoretic methods in discrepancy and energy optimization, with applications
CIF:小:差异和能量优化中的编码理论方法及其应用
- 批准号:
2104489 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Performance analysis and optimization of source coding based on random discretized chaotic transformations and its applications
基于随机离散混沌变换的源编码性能分析与优化及其应用
- 批准号:
21K12057 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Quantum Bit Representation-Based Gene-Coding Method for Graph Optimization Problems and Evolutionary Computation Using the Method
一种基于量子位表示的图优化问题基因编码方法及使用该方法的进化计算
- 批准号:
16K00318 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Network Information Theory Meets Network Optimization: Optimal Linear Network Coding for Packet Erasure Networks
CIF:小型:网络信息理论与网络优化的结合:数据包擦除网络的最优线性网络编码
- 批准号:
1422997 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CIF: Small: Structured-Network Coding: Fundamental Limits via Submodular Function Optimization
CIF:小型:结构化网络编码:通过子模函数优化实现基本限制
- 批准号:
1320237 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Capacity, coding and optimization for network information theory
网络信息论的容量、编码和优化
- 批准号:
262021-2007 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Transmitter- and receiver-based optimization of signaling-assisted modulation classification in MIMO-OFDM systems with adaptive modulation and coding
具有自适应调制和编码的 MIMO-OFDM 系统中基于发射机和接收机的信令辅助调制分类的优化
- 批准号:
211258124 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Optimization of epigenomic modification with regulatory RNAs considering the presence of endogenous non-coding RNAs
考虑内源非编码 RNA 的存在,利用调节 RNA 优化表观基因组修饰
- 批准号:
22710181 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Capacity, coding and optimization for network information theory
网络信息论的容量、编码和优化
- 批准号:
262021-2007 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Capacity, coding and optimization for network information theory
网络信息论的容量、编码和优化
- 批准号:
262021-2007 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual