Graph-based Learning and design of Advanced Mechanical Metamaterials
先进机械超材料的基于图形的学习和设计
基本信息
- 批准号:EP/X02394X/1
- 负责人:
- 金额:$ 274.53万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The emergence of additive manufacturing techniques has enabled the creation of complex 3D shapes with topological feature sizes spanning length scales from nanometres upwards. These manufacturing technologies have facilitated the creation of new materials (metamaterials) with previously unattainable properties such as light and recoverable ceramics. However, defects (deviations from the design) caused by manufacturing variabilities proliferate in topologically complex printed samples comprising millions of micro-scale elements. Traditional numerical simulations do not capture these a priori unknown defects, and thus the measured properties of fabricated metamaterials invariably deviate substantially from the designed/simulated properties. This low fidelity of the metamaterial simulation tools has left a vast portion of the metamaterial design space untapped. Leveraging recent foundational advances in machine learning and graph neural networks (GNNs), now is the ideal time for designing new additively manufactured materials with fully tailorable static and dynamic properties wherein, for example, a designer inputs a wave transmission spectrum from which a metamaterial that fully replicates the input response in an experimental setting is inversely designed and printed. Graph-based data-driven methods can address this challenge by their ability to learn from experimental data and efficiently encode the 3D material topology. The proposal will break new ground by exploiting breakthroughs in graph-based generative machine learning models to inversely generate metamaterials and thereby fuse the field of GNNs with mechanics, materials science, and additive manufacturing. This represents a fundamentally new realm of engineered material creation and discovery paradigm that will bridge the longstanding gap between simulation and experimental data of 3D printed metamaterials. The project will lay the scientific foundations for new engineering material designs and solutions.
增材制造技术的出现使得能够创建复杂的3D形状,其拓扑特征尺寸跨越纳米以上的长度尺度。这些制造技术促进了新材料(超材料)的创造,这些材料具有以前无法实现的特性,如轻质和可回收的陶瓷。然而,由制造可变性引起的缺陷(与设计的偏差)在包括数百万个微尺度元件的拓扑复杂的打印样品中激增。传统的数值模拟不捕捉这些先验未知的缺陷,因此,所制造的超材料的测量性能总是偏离设计/模拟的性能。超材料模拟工具的这种低保真度使得超材料设计空间的很大一部分未被开发。利用机器学习和图形神经网络(GNN)的最新基础进展,现在是设计具有完全可定制的静态和动态特性的新型增材制造材料的理想时机,其中,例如,设计师输入波透射谱,从中反向设计和打印完全复制实验设置中输入响应的超材料。基于图形的数据驱动方法可以通过从实验数据中学习并有效编码3D材料拓扑的能力来解决这一挑战。该提案将通过利用基于图形的生成机器学习模型的突破来反向生成超材料,从而将GNN领域与力学,材料科学和增材制造融合在一起。这代表了工程材料创造和发现范式的一个全新领域,将弥合3D打印超材料的模拟和实验数据之间的长期差距。该项目将为新的工程材料设计和解决方案奠定科学基础。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Underexcitation prevents crystallization of granular assemblies subjected to high-frequency vibration.
- DOI:10.1073/pnas.2306209120
- 发表时间:2023-07-18
- 期刊:
- 影响因子:11.1
- 作者:Al Mahri, Sara;Grega, Ivan;Shaikeea, Angkur J. D.;Wadley, Haydn N. G.;Deshpande, Vikram S.
- 通讯作者:Deshpande, Vikram S.
Gravity enables self-assembly
- DOI:10.1002/ntls.20220007
- 发表时间:2022-07-01
- 期刊:
- 影响因子:0
- 作者:Grega, Ivan;Shaikeea, Angkur J. D.;Deshpande, Vikram S.
- 通讯作者:Deshpande, Vikram S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikram Deshpande其他文献
Leiomyoma-like Morphology in Metastatic Uterine Inflammatory Myofibroblastic Tumors
- DOI:
10.1016/j.modpat.2023.100143 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Kyle M. Devins;Wesley Samore;G. Petur Nielsen;Vikram Deshpande;Esther Oliva - 通讯作者:
Esther Oliva
Targeted detection of endogenous LINE-1 proteins and ORF2p interactions
- DOI:
10.1186/s13100-024-00339-4 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:3.100
- 作者:
Mathias I. Nielsen;Justina C. Wolters;Omar G. Rosas Bringas;Hua Jiang;Luciano H. Di Stefano;Mehrnoosh Oghbaie;Samira Hozeifi;Mats J. Nitert;Alienke van Pijkeren;Marieke Smit;Lars ter Morsche;Apostolos Mourtzinos;Vikram Deshpande;Martin S. Taylor;Brian T. Chait;John LaCava - 通讯作者:
John LaCava
Large and Extensive Multilocular Peritoneal Inclusion Cysts Lack Genomic Alterations and Follow an Indolent Clinical Course Despite Rare Recurrences.
尽管很少复发,但大而广泛的多房性腹膜包涵囊肿缺乏基因组改变,并且遵循惰性临床过程。
- DOI:
10.1097/pas.0000000000002249 - 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Kyle M. Devins;Esther Baranov;Yin P Hung;Brendan C. Dickson;Esther Oliva;Vikram Deshpande - 通讯作者:
Vikram Deshpande
Interfacial delamination of a sandwich layer by aqueous corrosion
- DOI:
10.1016/j.corsci.2022.110356 - 发表时间:
2022-07-15 - 期刊:
- 影响因子:8.500
- 作者:
Sina Askarinejad;Vikram Deshpande;Norman Fleck - 通讯作者:
Norman Fleck
Susceptibility to Immune Elimination of Epithelial and Quasi-mesenchymal Pancreatic Ductal Adenocarcinoma Cells under Basal Conditions and Following Treatment with FOLFIRINOX
- DOI:
10.1016/j.jamcollsurg.2021.07.305 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Yurie Sekigami;Shahrzad Arya;Daniel Vallera;Vikram Deshpande;David T. Ting;Cristina R. Ferrone;Soldano Ferrone - 通讯作者:
Soldano Ferrone
Vikram Deshpande的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikram Deshpande', 18)}}的其他基金
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 274.53万 - 项目类别:
Research Grant
Collaborative Research: One-Dimensional Correlated and Topological Electronic States in Ultra-Clean Carbon Nanotubes
合作研究:超洁净碳纳米管中的一维关联和拓扑电子态
- 批准号:
2005182 - 财政年份:2020
- 资助金额:
$ 274.53万 - 项目类别:
Standard Grant
QII-TAQS: Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures
QII-TAQS:高质量三维拓扑绝缘体异质结构中具有马约拉纳费米子的量子器件
- 批准号:
1936383 - 财政年份:2019
- 资助金额:
$ 274.53万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
- 批准号:
2339588 - 财政年份:2024
- 资助金额:
$ 274.53万 - 项目类别:
Continuing Grant
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
$ 274.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SHINE: Understanding the Relationships of Photospheric Vector Magnetic Field Parameters in Solar Flare Occurrences using Graph-based Machine Learning Models
SHINE:使用基于图的机器学习模型了解太阳耀斑发生时光球矢量磁场参数的关系
- 批准号:
2301397 - 财政年份:2023
- 资助金额:
$ 274.53万 - 项目类别:
Standard Grant
Graph Learning of Cell-cell Communications in Spatial Transcriptomics
空间转录组学中细胞间通信的图学习
- 批准号:
10672669 - 财政年份:2022
- 资助金额:
$ 274.53万 - 项目类别:
ERI: GRAPHSEC: Graph-Based Vehicular Communication Security with Adaptive Embedded Learning
ERI:GRAPHSEC:具有自适应嵌入式学习的基于图的车辆通信安全
- 批准号:
2138253 - 财政年份:2022
- 资助金额:
$ 274.53万 - 项目类别:
Standard Grant
Financial Risk Factors with Graph Learning-based Risk Forecasting
金融风险因素与基于图学习的风险预测
- 批准号:
2753236 - 财政年份:2022
- 资助金额:
$ 274.53万 - 项目类别:
Studentship
Continuing Tool Development for Longitudinal Network Analysis: Enriching the Diagnostic Power of Disease-Specific Connectomic Biomarkers by Deep Graph Learning
纵向网络分析的持续工具开发:通过深度图学习丰富疾病特异性连接组生物标志物的诊断能力
- 批准号:
10359157 - 财政年份:2021
- 资助金额:
$ 274.53万 - 项目类别:
Neural Network based Graph Learning: Model Evolution and Real-World Application
基于神经网络的图学习:模型演化和实际应用
- 批准号:
21K12042 - 财政年份:2021
- 资助金额:
$ 274.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of 3D Structure Through Graph-Based Deep Learning
通过基于图的深度学习生成 3D 结构
- 批准号:
534122-2019 - 财政年份:2021
- 资助金额:
$ 274.53万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Graph-based deep learning for representing events at the Large Hadron Collider
用于表示大型强子对撞机事件的基于图的深度学习
- 批准号:
2480912 - 财政年份:2020
- 资助金额:
$ 274.53万 - 项目类别:
Studentship