Time-resolved sImulations of ultrafast phenoMena in quantum matErialS (TIMES)
量子材料中超快现象的时间分辨模拟 (TIMES)
基本信息
- 批准号:EP/Y032659/1
- 负责人:
- 金额:$ 33.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Emergent phenomena arising from excitation, correlation, and coherence of electrons, spin, photons and nuclei may open unexplored paths to exploit advanced quantum materials. Modelling and understanding ultrafast non-equilibrium dynamics is the key to quantum computing, to new paradigms for information storage and retrieval, to novel optoelectronic devices for efficient light emission and renewable energy production, and to efficient single-photon quantum emitters.The TIMES doctoral network will merge different areas of expertise in many-body and time-dependent electronic structure methods to define a new paradigm for the atomistic modelling of nonequilibrium processes in condensed matter. This is an area where the theoretical state-of-the-art is lacking in predictive power. On one hand, modelling crucial dynamical processes such as the ones involving energy exchange between electronic and nuclear degrees of freedom out-of-equilibrium remains out of reach for current first-principles approaches. On the other hand, phenomenological and second-principles models lack the granularity required to quantitatively capture the evolution of complex materials. TIMES will develop first-principles theoretical and computational tools to tackle the coherent and correlated electron-nuclei dynamics stimulated by ultrafast laser pulses for the understanding of complex quantum states and emergent phenomena in a diverse range of functional materials like perovskites, 2D materials, Weyl semimetals, Dirac materials and topological insulators. For this purpose, TIMES will train a new generation of scientists capable of devising novel theoretical and computational frameworks to simulate nonequilibrium phenomena. TIMES will synergize theoretical and numerical developments with High Performance Computer Centres, SMEs, and big-data facilities across Europe. The network activities will benefit of synergistic collaborations with leading experimental groups in ultrafast spectroscopy.
由电子、自旋、光子和原子核的激发、相关和相干产生的新兴现象可能为开发先进的量子材料开辟未知的道路。对超快非平衡动力学的建模和理解是量子计算、信息存储和检索新范式、用于高效发光和可再生能源生产的新型光电器件以及高效单光子量子发射器的关键。时代博士网络将合并多体和时间相关电子结构方法的不同领域的专业知识,以定义凝聚态物质非平衡过程的原子建模的新范式。在这一领域,最先进的理论还缺乏预测能力。一方面,模拟关键的动力学过程,例如涉及电子和核自由度之间的能量交换的动力学过程,对于目前的第一原理方法来说仍然遥不可及。另一方面,现象学和第二原理模型缺乏定量捕捉复杂材料演变所需的粒度。TIMES将开发第一线原理理论和计算工具,以解决由超快激光脉冲刺激的相干和相关电子-原子核动力学,以理解钙钛矿、二维材料、Weyl半金属、狄拉克材料和拓扑绝缘体等多种功能材料中的复杂量子态和紧急现象。为此,《时代》将培养新一代的科学家,他们有能力设计新的理论和计算框架来模拟非平衡现象。TIMES将与欧洲各地的高性能计算机中心、中小企业和大数据设施协同理论和数值发展。网络活动将受益于与超快光谱领先实验小组的协同合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Myrta Gruening其他文献
Myrta Gruening的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Myrta Gruening', 18)}}的其他基金
Un-particle superconductivity in low-dimensional materials
低维材料中的非粒子超导性
- 批准号:
EP/V029908/1 - 财政年份:2021
- 资助金额:
$ 33.22万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
- 批准号:
2303085 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: AAPF: Little Galaxies, Big Impact: New Insights through Highly-Resolved Simulations of Early Dwarf Galaxies
博士后奖学金:AAPF:小星系,大影响:通过早期矮星系高分辨率模拟的新见解
- 批准号:
2303858 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Fellowship Award
Collaborative Research: Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
合作研究:利用时间分辨电子显微镜、数据分析和模拟量化支撑金属纳米颗粒的粗化动力学
- 批准号:
2303084 - 财政年份:2023
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Transport in Turbulent Boundary Layers over Permeable Beds: Pore-resolved Direct Simulations and Macroscale Continuum Modeling
渗透层上湍流边界层的传输:孔隙分辨直接模拟和宏观连续体建模
- 批准号:
2053248 - 财政年份:2021
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Quantifying the Coarsening Kinetics of Supported Metal Nanoparticles Using Time-resolved Electron Microscopy, Data Analytics and Simulations
使用时间分辨电子显微镜、数据分析和模拟量化负载金属纳米颗粒的粗化动力学
- 批准号:
1809398 - 财政年份:2018
- 资助金额:
$ 33.22万 - 项目类别:
Continuing Grant
Cloud-resolved Chemistry Simulations of Selected DC3 Thunderstorms
选定 DC3 雷暴的云解析化学模拟
- 批准号:
1522551 - 财政年份:2015
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Highly resolved edge detection and localization of micro structures using optical 3D measurements and simulations
使用光学 3D 测量和模拟对微结构进行高分辨率边缘检测和定位
- 批准号:
276809864 - 财政年份:2015
- 资助金额:
$ 33.22万 - 项目类别:
Research Grants
Collaborative Research: CDS&E: FIRE: Physically-Predictive Cosmological Simulations of Galaxy Formation with Resolved Feedback
合作研究:CDS
- 批准号:
1411920 - 财政年份:2014
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: FIRE: Physically-Predictive Cosmological Simulations of Galaxy Formation with Resolved Feedback
合作研究:CDS
- 批准号:
1412836 - 财政年份:2014
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: FIRE: Physically-Predictive Cosmological Simulations of Galaxy Formation with Resolved Feedback
合作研究:CDS
- 批准号:
1412153 - 财政年份:2014
- 资助金额:
$ 33.22万 - 项目类别:
Standard Grant